Multi-task prediction method of business process based on BERT and Transfer Learning

被引:17
|
作者
Chen, Hang [1 ,2 ]
Fang, Xianwen [1 ,2 ]
Fang, Huan [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
[2] Anhui Prov Engn Lab Big Data Anal & Early Warning, Huainan, Peoples R China
关键词
Predictive business process monitoring; Transfer Learning; Transformer; BERT; Masked Activity Model; NEURAL-NETWORKS; CLASSIFIERS;
D O I
10.1016/j.knosys.2022.109603
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predictive Business Process Monitoring (PBPM) is one of the essential tasks in Business Process Management (BPM). It aims to predict the future behavior of an ongoing case using completed cases of a process stored in the event log, such as the prediction of the next activity and outcome of the case, etc. Although various deep learning methods have been proposed for PBPM, none of them consider the simultaneous application to multiple predictive tasks. This paper proposes a multi-task prediction method based on BERT and Transfer Learning. First, the method performs the Masked Activity Model (MAM) of a self-supervised pre-training task on many unlabeled traces using BERT (Bidirectional Encoder Representations from Transformers). The pre-training task MAM captures the bidirectional semantic information of the input traces using the bidirectional Transformer structure in BERT. It obtains the long-term dependencies between activities using the Attention mechanism in the Transformer. Then, the universal representation model of the traces is obtained. Finally, two different models are defined for two prediction tasks of the next activity and the outcome of the case, respectively, and the pre-trained model is transferred to the two prediction models for training using the fine-tuning strategy. Experiments evaluation on eleven real-world event logs shows that the performance of the prediction tasks is affected by different masking tactics and masking probabilities in the pre-training task MAM. This method performs well in the next activity prediction task and the case outcome prediction task. It can be applied to several different prediction tasks faster and with more outstanding performance than the direct training method. (C) 2022 Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Lane-changing trajectory prediction based on multi-task learning
    Xianwei Meng
    Jinjun Tang
    Fang Yang
    Zhe Wang
    Transportation Safety and Environment, 2023, 5 (04) : 104 - 114
  • [42] An efficient active learning method for multi-task learning
    Xiao, Yanshan
    Chang, Zheng
    Liu, Bo
    KNOWLEDGE-BASED SYSTEMS, 2020, 190
  • [43] Multi-task gradient descent for multi-task learning
    Lu Bai
    Yew-Soon Ong
    Tiantian He
    Abhishek Gupta
    Memetic Computing, 2020, 12 : 355 - 369
  • [44] Multi-task gradient descent for multi-task learning
    Bai, Lu
    Ong, Yew-Soon
    He, Tiantian
    Gupta, Abhishek
    MEMETIC COMPUTING, 2020, 12 (04) : 355 - 369
  • [45] BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
    Stickland, Asa Cooper
    Murray, Iain
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [46] Multi-Task Learning Using BERT With Soft Parameter Sharing Between Layers
    Pahari, Niraj
    Shimada, Kazutaka
    2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,
  • [47] fastHan: A BERT-based Multi-Task Toolkit for Chinese NLP
    Geng, Zhichao
    Yan, Hang
    Qiu, Xipeng
    Huang, Xuanjing
    ACL-IJCNLP 2021: THE JOINT CONFERENCE OF THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING: PROCEEDINGS OF THE SYSTEM DEMONSTRATIONS, 2021, : 99 - 106
  • [48] Structured Multi-task Learning for Molecular Property Prediction
    Liu, Shengchao
    Qu, Meng
    Zhang, Zuobai
    Cai, Huiyu
    Tang, Jian
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [49] Multi-Task Learning for Dense Prediction Tasks: A Survey
    Vandenhende, Simon
    Georgoulis, Stamatios
    Van Gansbeke, Wouter
    Proesmans, Marc
    Dai, Dengxin
    Van Gool, Luc
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3614 - 3633
  • [50] Enhancement of acute toxicity prediction by multi-task learning
    Sosnin, Sergey
    Karlov, Dmitry
    Tetko, Igor
    Fedorov, Maxim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257