Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application

被引:98
|
作者
Zhao, Chen [1 ]
Shu, Kewei [1 ]
Wang, Caiyun [1 ]
Gambhir, Sanjeev [1 ]
Wallace, Gordon G. [1 ]
机构
[1] Univ Wollongong, ARC Ctr Excellence Elect Sci, Intelligent Polymer Res Inst, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
stretchable electrode; graphene; polypyrrole; wearable; supercapacitor; ENERGY-STORAGE; ELECTROCHEMICAL CAPACITORS; FLEXIBLE SUPERCAPACITOR; WEARABLE ELECTRONICS; RAMAN-SPECTROSCOPY; GRAPHITE OXIDE; SOLID-STATE; TEXTILES; FIBERS; PERFORMANCE;
D O I
10.1016/j.electacta.2015.05.019
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The advent of self-powered functional garments has given rise to a demand for stretchable energy storage devices that are amendable to integration into textile structures. The electromaterials (anode, cathode and separator) are expected to sustain a deformation of 3% to 55% associated with body movement. Here, we report a stretchable fabric supercapacitor electrode using commonly available nylon lycra fabric as the substrate and graphene oxide (GO) as a dyestuff. It was prepared via a facile dyeing approach followed by a mild chemical reduction. This reduced graphene oxide (rGO) coated fabric electrode retains conductivity at an applied strain of up to 200%. It delivers a specific capacitance of 12.3 F g(-1) at a scan rate of 5 mV s(-1) in 1.0 M lithium sulfate aqueous solution. The capacitance is significantly increased to 114 F g(-1) with the addition of a chemically synthesized polypyrrole (PPy) coating. This PPy-rGO-fabric electrode demonstrates an improved cycling stability and a higher capacitance at 50% strain when compared to the performance observed with no strain. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 19
页数:8
相关论文
共 50 条
  • [41] Optimizing Reduced Graphene Oxide Aerogel for a Supercapacitor
    Lee, Soon Poh
    Ali, Gomaa A.M.
    Hegazy, H.H.
    Lim, Hong Ngee
    Chong, Kwok Feng
    Energy and Fuels, 2021, 35 (05): : 4559 - 4569
  • [42] Synthesis of Highly Reduced Graphene Oxide for Supercapacitor
    Wang, Chubei
    Zhou, Jianwei
    Du, Feipeng
    JOURNAL OF NANOMATERIALS, 2016, 2016
  • [43] Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles
    Schirmer, K. S. U.
    Esrafilzadeh, D.
    Thompson, B. C.
    Quigley, A. F.
    Kapsa, R. M. I.
    Wallace, G. G.
    JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (06) : 1142 - 1149
  • [44] Optimizing Reduced Graphene Oxide Aerogel for a Supercapacitor
    Lee, Soon Poh
    Ali, Gomaa A. M.
    Hegazy, H. H.
    Lim, Hong Ngee
    Chong, Kwok Feng
    ENERGY & FUELS, 2021, 35 (05) : 4559 - 4569
  • [45] Field Emission investigation of composites of Polypyrrole with Graphene Oxide, Reduced graphene oxide and Graphene Nanoribbons
    Harpale, Kashmira
    Bansode, Sanjeewani
    More, Mahendra
    Late, D. J.
    2016 29TH INTERNATIONAL VACUUM NANOELECTRONICS CONFERENCE (IVNC), 2016,
  • [46] Hydrothermal Synthesis of Reduced Graphene Oxide/Nickel Oxide Composite as Electrode Materials for Supercapacitor
    Chen Gang
    Guan Hongtao
    Dong Chengjun
    Wang Yude
    RARE METAL MATERIALS AND ENGINEERING, 2016, 45 : 32 - 37
  • [47] Solid-state asymmetric supercapacitor based on manganese dioxide/reduced-graphene oxide and polypyrrole/reduced-graphene oxide in a gel electrolyte
    Khoh, Wai-Hwa
    Hong, Jong-Dal
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 456 : 26 - 34
  • [48] Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes
    Zhang, Jintao
    Zhao, X. S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (09): : 5420 - 5426
  • [49] Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application
    Sarker, Ashis K.
    Hong, Jong-Dal
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2014, 35 (06) : 1799 - 1805
  • [50] Influence of the Nickel Oxide Nanostructure Morphology on the Effectiveness of Reduced Graphene Oxide Coating in Supercapacitor Electrodes
    Lee, Gyeonghee
    Cheng, Yingwen
    Varanasi, Chakrapani V.
    Liu, Jie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (05): : 2281 - 2286