What drives the evolution of gas kinematics in star-forming galaxies?

被引:33
|
作者
Hung, Chao-Ling [1 ]
Hayward, Christopher C. [2 ,3 ]
Yuan, Tiantian [4 ,5 ]
Boylan-Kolchin, Michael [6 ]
Faucher-Giguere, Claude-Andre [7 ,8 ]
Hopkins, Philip F. [9 ]
Keres, Dusan [10 ]
Murray, Norman [11 ]
Wetzel, Andrew [12 ]
机构
[1] Manhattan Coll, Phys Dept, 4513 Manhattan Coll Pkwy, Bronx, NY 10471 USA
[2] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
[3] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[4] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia
[5] ARC Ctr Excellence All Sky Astrophys 3 Dimens AST, Geraldton, WA, Australia
[6] Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA
[7] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA
[8] Northwestern Univ, CIERA, 2145 Sheridan Rd, Evanston, IL 60208 USA
[9] CALTECH, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA
[10] Univ Calif San Diego, Dept Phys, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA
[11] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada
[12] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
基金
澳大利亚研究理事会;
关键词
galaxies: evolution; galaxies: kinematics and dynamics; galaxies: structure; GRAVITATIONALLY LENSED GALAXIES; SMOOTHED PARTICLE HYDRODYNAMICS; INTERSTELLAR-MEDIUM; FORMATION RATES; RESOLVED SPECTROSCOPY; VELOCITY DISPERSION; STELLAR MASSES; MAIN-SEQUENCE; TURBULENCE; FEEDBACK;
D O I
10.1093/mnras/sty2970
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
One important result from recent large integral field spectrograph (IFS) surveys is that the intrinsic velocity dispersion of galaxies traced by star-forming gas increases with redshift. Massive, rotation-dominated discs are already in place at z similar to 2, but they are dynamically hotter than spiral galaxies in the local Universe. Although several plausible mechanisms for this elevated velocity dispersion (e.g. star formation feedback, elevated gas supply, or more frequent galaxy interactions) have been proposed, the fundamental driver of the velocity dispersion enhancement at high redshift remains unclear. We investigate the origin of this kinematic evolution using a suite of cosmological simulations from the FIRE (Feedback In Realistic Environments) project. Although IFS surveys generally cover a wider range of stellar masses than in these simulations, the simulated galaxies show trends between intrinsic velocity dispersion (sigma(intr)), SFR, and z in agreement with observations. In both observations and simulations, galaxies on the star-forming main sequence have median sintr values that increase from z similar to 0 to z similar to 1-1.5, but this increasing trend is less evident at higher redshift. In the FIRE simulations, sintr can vary significantly on time-scales of less than or similar to 100 Myr. These variations closely mirror the time evolution of the SFR and gas inflow rate ((M) over dot(gas)). By cross-correlating pairs of sigma(intr), (M) over dot(gas), and SFR, we show that increased gas inflow leads to subsequent enhanced star formation, and enhancements in sigma(intr) tend to temporally coincide with increases in. (M) over dot(gas) and SFR.
引用
收藏
页码:5125 / 5137
页数:13
相关论文
共 50 条
  • [31] THE GAS MASS OF STAR-FORMING GALAXIES AT z ≈ 1.3
    Kanekar, Nissim
    Sethi, Shiv
    Dwarakanath, K. S.
    ASTROPHYSICAL JOURNAL LETTERS, 2016, 818 (02)
  • [32] Structure and Kinematics of Star-forming Elliptical Galaxies in SDSS-MaNGA
    Biswas, Pralay
    Wadadekar, Yogesh
    ASTROPHYSICAL JOURNAL, 2024, 970 (01):
  • [33] ZFIRE: THE KINEMATICS OF STAR-FORMING GALAXIES AS A FUNCTION OF ENVIRONMENT AT z ∼ 2
    Alcorn, Leo Y.
    Tran, Kim-Vy H.
    Kacprzak, Glenn G.
    Nanayakkara, Themiya
    Straatman, Caroline
    Yuan, Tiantian
    Allen, Rebecca J.
    Cowley, Michael
    Dave, Romeel
    Glazebrook, Karl
    Kewley, Lisa J.
    Labbe, Ivo
    Quadri, Ryan
    Spitler, Lee R.
    Tomczak, Adam
    ASTROPHYSICAL JOURNAL LETTERS, 2016, 825 (01)
  • [34] The kinematics of massive high-redshift dusty star-forming galaxies
    Amvrosiadis, A.
    Wardlow, J. L.
    Birkin, J. E.
    Smail, I
    Swinbank, A. M.
    Nightingale, J.
    Bertoldi, F.
    Brandt, W. N.
    Casey, C. M.
    Chapman, S. C.
    Chen, C. -c
    Cox, P.
    da Cunha, E.
    Dannerbauer, H.
    Dudzeviciute, U.
    Gullberg, B.
    Hodge, J. A.
    Knudsen, K. K.
    Menten, K.
    Walter, F.
    van der Werf, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 536 (04) : 3757 - 3783
  • [35] HR-COSMOS: Kinematics of star-forming galaxies at z ∼ 0.9☆
    Pelliccia, D.
    Tresse, L.
    Epinat, B.
    Ilbert, O.
    Scoville, N.
    Amram, P.
    Lemaux, B. C.
    Zamorani, G.
    ASTRONOMY & ASTROPHYSICS, 2017, 599
  • [36] Evolution of star-forming dwarf galaxies: characterizing the star formation scenarios
    Martin-Manjon, M. L.
    Molla, M.
    Diaz, A. I.
    Terlevich, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 420 (02) : 1294 - 1308
  • [37] Star-forming complexes in galaxies
    Elmegreen, Bruce G.
    MANY SCALES IN THE UNIVERSE: JENAM 2004 ASTROPHYSICS REVIEWS, 2006, : 99 - 110
  • [38] STAR-FORMING GALAXIES IN THE INFRARED
    WEEDMAN, DW
    ASTROPHYSICAL LETTERS & COMMUNICATIONS, 1988, 27 (02) : 117 - 124
  • [39] Ionized gas kinematics and chemical abundances of low-mass star-forming galaxies at z ∼ 3
    Llerena, M.
    Amorin, R.
    Pentericci, L.
    Calabro, A.
    Shapley, A. E.
    Boutsia, K.
    Perez-Montero, E.
    Vilchez, J. M.
    Nakajima, K.
    ASTRONOMY & ASTROPHYSICS, 2023, 676
  • [40] Single star-forming galaxies and star-forming galaxies in SF plus SF and mixed pairs
    Kelm, B
    Focardi, P
    Evolution of Starbursts, 2005, 783 : 50 - 56