Accelerating Quantum Monte Carlo Simulations of Real Materials on GPU Clusters

被引:57
|
作者
Esler, Kenneth P. [1 ]
Kim, Jeongnim [1 ]
Ceperley, David M. [2 ]
Shulenburger, Luke [3 ]
机构
[1] Univ Illinois, NCSA, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Carnegie Inst Sci, Washington, DC 20005 USA
基金
美国国家科学基金会;
关键词
Component; graphics processors; Monte Carlo; physics; scientific computing;
D O I
10.1109/MCSE.2010.122
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
More accurate than mean-field methods and more scalable than quantum chemical methods, continuum quantum Monte Carlo (QMC) is an invaluable tool for predicting the properties of matter from fundamental principles. Because QMC algorithms offer multiple forms of parallelism, they're ideal candidates for acceleration in the many-core paradigm.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [41] Analysis of the ionization potentials of small superalkali lithium clusters based on quantum Monte Carlo simulations
    Brito, B. G. A.
    Hai, G. -Q.
    Candido, Ladir
    [J]. CHEMICAL PHYSICS LETTERS, 2018, 708 : 54 - 60
  • [42] Delayed Update Algorithms for Quantum Monte Carlo Simulation on GPU
    McDaniel, Tyler
    D'Azevedo, Ed
    Li, Ying Wai
    Kent, Paul
    Wong, Ming
    Wong, Kwai
    [J]. PROCEEDINGS OF XSEDE16: DIVERSITY, BIG DATA, AND SCIENCE AT SCALE, 2016,
  • [43] GPU-accelerated variational path integral Monte Carlo simulations
    Hinde, Robert J.
    Harrison, Robert
    Peterson, Greg
    Kakani, Venkata Prasanth
    Mudhasani, Shanthan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [44] GPU implementation of the Rosenbluth generation method for static Monte Carlo simulations
    Guo, Yachong
    Baulin, Vladimir A.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2017, 216 : 95 - 101
  • [45] Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization
    Brady, Lucas T.
    van Dam, Wim
    [J]. PHYSICAL REVIEW A, 2016, 93 (03)
  • [46] Understanding Quantum Tunneling through Quantum Monte Carlo Simulations
    Isakov, Sergei V.
    Mazzola, Guglielmo
    Smelyanskiy, Vadim N.
    Jiang, Zhang
    Boixo, Sergio
    Neven, Hartmut
    Troyer, Matthias
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (18)
  • [47] Accelerating Convergence in Fock Space Quantum Monte Carlo Methods
    Neufeld, Verena A.
    Thom, Alex J. W.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (03) : 1503 - 1510
  • [48] GPU-Accelerated Monte Carlo Simulations of Dense Stellar Systems
    Pattabiraman, B.
    Umbreit, S.
    Liao, W.
    Rasio, F.
    Kalogera, V.
    Choudhary, A.
    [J]. ADVANCES IN COMPUTATIONAL ASTROPHYSICS: METHODS, TOOLS AND OUTCOMES, 2012, 453 : 329 - 332
  • [49] Deep Particles Embedding: accelerating Monte-Carlo dose simulations
    Martinot, S.
    Komodakis, N.
    Vakalopoulou, M.
    Bus, N.
    Robert, C.
    Deutsch, E.
    Paragios, N.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1526 - S1527
  • [50] Accelerating Hybrid Monte Carlo simulations of the Hubbard model on the hexagonal lattice
    Krieg, Stefan
    Luu, Thomas
    Ostmeyer, Johann
    Papaphilippou, Philippos
    Urbach, Carsten
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2019, 236 : 15 - 25