Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging

被引:34
|
作者
Cheng, Liang [1 ,2 ,3 ]
Shen, Sida [1 ]
Jiang, Dawei [2 ,3 ,5 ]
Jin, Qiutong [1 ]
Ellison, Paul A. [2 ,3 ]
Ehlerding, Emily B. [2 ,3 ]
Goel, Shreya [2 ,3 ]
Song, Guosheng [1 ]
Huang, Peng [5 ]
Barnhart, Todd E. [2 ,3 ]
Liu, Zhuang [1 ]
Cai, Weibo [2 ,3 ,4 ]
机构
[1] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
[2] Univ Wisconsin, Dept Radiol, Madison, WI 53705 USA
[3] Univ Wisconsin, Dept Med Phys, Madison, WI 53705 USA
[4] Univ Wisconsin, Carbone Canc Ctr, Madison, WI 53705 USA
[5] Shenzhen Univ, Sch Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen 518060, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
metal oxide nanomaterials; chelator-free labelin& Zr-89; labeling stability; lymph node PET imaging; GUIDED PHOTOTHERMAL THERAPY; SILICA NANOPARTICLES; BIOLOGICAL PROCESSES; CANCER; METASTASIS; RADIO; NANOMATERIALS; INHIBITION; NANOSHEETS; CHEMISTRY;
D O I
10.1021/acsnano.7b05428
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Radiolabeling of molecules or nanoparticles to form imaging probes is critical for positron emission tomography (PET) imaging, which, with high sensitivity and the ability for quantitative imaging, has been widely used in the clinic. While conventional radiolabeling often employs chelator molecules, a general method for chelator-free radiolabeling of a wide range of materials remains to be developed. Herein, we determined that 10 different types of metal oxide (MxOy, M = Gd, Ti, Te, Eu, Ta, Er, Y, Yb, Ce, or Mo, x = 1-2, y = 2-5) nanomaterials with polyethylene glycol (PEG) modification could be labeled with Zr-89, a PET tracer, via a simple yet general chelator-free radiolabeling method upon simple mixing. High-labeling yields and good serum stabilities are achieved with this method, owing to the strong bonding between oxyphilic Zr-89(4+) with oxygen atoms on the MxOy surface. Selecting Zr-89-Gd2O3-PEG as a multimodal imaging probe, we have successfully demonstrated in vivo PET imaging of draining lymph nodes, which are also visualized under magnetic resonance imaging, showing advantages over free Zr-89 in the mapping of draining lymph node networks. Our work describes a general and simple method for chelator-free radiolabeling of metal oxide nanostructures, which is promising for the development of multifunctional nanoprobes in biomedical imaging.
引用
收藏
页码:12193 / 12201
页数:9
相关论文
共 50 条
  • [41] Synthesis and evaluation of bifunctional tetrahydroxamate chelators for labeling antibodies with 89Zr for imaging with positron emission tomography
    Rousseau, Julie
    Zhang, Zhengxing
    Wang, Xiaozhu
    Zhang, Chengcheng
    Lau, Joseph
    Rousseau, Etienne
    Colovic, Milena
    Hundal-Jabal, Navjit
    Benard, Francois
    Lin, Kuo-Shyan
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [42] Copper, gallium and zirconium positron emission tomography imaging agents: The importance of metal ion speciation
    McInnes, Lachlan E.
    Rudd, Stacey E.
    Donnelly, Paul S.
    COORDINATION CHEMISTRY REVIEWS, 2017, 352 : 499 - 516
  • [43] Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-Free Radio labeling and Multimodal Imaging Guided Photothermal Therapy
    Liu, Teng
    Shi, Sixiang
    Liang, Chao
    Shen, Sida
    Cheng, Liang
    Wang, Chao
    Song, Xuejiao
    Goel, Shreya
    Barnhart, Todd E.
    Cai, Weibo
    Liu, Zhuang
    ACS NANO, 2015, 9 (01) : 950 - 960
  • [44] Direct-labeling of iron oxide nanoparticles with zirconium-89 and its biological application in targeting of cancer cells
    Choi, Pyeong Seok
    Lee, Jun Young
    Vyas, Chirag
    Kong, Young Bae
    Lee, Eun Je
    Song, Ho Seung
    Yang, Seung Dae
    Hur, Min Goo
    Park, Jeong Hoon
    JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS, 2019, 62 : S476 - S477
  • [45] PET Imaging For Tracking Immunologically Competent Cells With Zirconium-89 Labeling Method In Murine Syngeneic Transplantation Model
    Sasaki, T.
    Akehi, M.
    Sadahira, T.
    Hagihara, K.
    Watanabe, R.
    Ishimoto, Y.
    Komatsu, N.
    Wakita, K.
    Watanabe, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S192 - S192
  • [46] Macrocycle-Based Hydroxamate Ligands for Complexation and Immunoconjugation of 89Zirconium for Positron Emission Tomography (PET) Imaging
    Boros, Eszter
    Holland, Jason P.
    Kenton, Nathaniel
    Rotile, Nicholas
    Caravan, Peter
    CHEMPLUSCHEM, 2016, 81 (03): : 274 - 281
  • [47] Labeling Strategies with F-18 for Positron Emission Tomography Imaging
    Gu, Yonghong
    Huang, Dong
    Liu, Zhiguo
    Huang, Jiaguo
    Zeng, Wenbin
    MEDICINAL CHEMISTRY, 2011, 7 (05) : 334 - 344
  • [48] The rise of metal radionuclides in medical imaging: copper-64, zirconium-89 and yttrium-86
    Ikotun, Oluwatayo F.
    Lapi, Suzanne E.
    FUTURE MEDICINAL CHEMISTRY, 2011, 3 (05) : 599 - 621
  • [49] Production of the next-generation positron nuclide zirconium-89 (89Zr) guided by Monte Carlo simulation and its good quality for antibody labeling
    Wang, Feng
    Ding, Jin
    Guo, Xiaoyi
    Liu, Teli
    Ding, Lixin
    Xia, Lei
    Zhu, Hua
    Yang, Zhi
    JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS, 2021, 64 (01): : 47 - 56
  • [50] Synthesis and characterisation of zirconium complexes for cell tracking with Zr-89 by positron emission tomography
    Ferris, Trevor J.
    Charoenphun, Putthiporn
    Meszaros, Levente K.
    Mullen, Gregory E. D.
    Blower, Philip J.
    Went, Michael J.
    DALTON TRANSACTIONS, 2014, 43 (39) : 14851 - 14857