A model with space-varying regression coefficients for clustering multivariate spatial count data

被引:1
|
作者
Lagona, Francesco [1 ,2 ]
Ranalli, Monia [3 ]
Barbi, Elisabetta [3 ]
机构
[1] Roma Tre Univ, Dept Polit Sci, Via G Chiabrera 199, I-00145 Rome, Italy
[2] Univ Bergen, Dept Math, Bergen, Norway
[3] Sapienza Univ Rome, Dept Stat Sci, Rome, Italy
关键词
cause-specific mortality; composite likelihood; hidden Markov field; model-based clustering; Potts model; HIDDEN MARKOV-MODELS; MORTALITY; HETEROGENEITY; SEGMENTATION; FIELDS;
D O I
10.1002/bimj.201900229
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multivariate spatial count data are often segmented by unobserved space-varying factors that vary across space. In this setting, regression models that assume space-constant covariate effects could be too restrictive. Motivated by the analysis of cause-specific mortality data, we propose to estimate space-varying effects by exploiting a multivariate hidden Markov field. It models the data by a battery of Poisson regressions with spatially correlated regression coefficients, which are driven by an unobserved spatial multinomial process. It parsimoniously describes multivariate count data by means of a finite number of latent classes. Parameter estimation is carried out by composite likelihood methods, that we specifically develop for the proposed model. In a case study of cause-specific mortality data in Italy, the model was capable to capture the spatial variation of gender differences and age effects.
引用
收藏
页码:1508 / 1524
页数:17
相关论文
共 50 条
  • [1] Dynamic spatial regression models for space-varying forest stand tables
    Finley, Andrew O.
    Banerjee, Sudipto
    Weiskittel, Aaron R.
    Babcock, Chad
    Cook, Bruce D.
    [J]. ENVIRONMETRICS, 2014, 25 (08) : 596 - 609
  • [2] A KERNEL REGRESSION MODEL FOR PANEL COUNT DATA WITH TIME-VARYING COEFFICIENTS
    Wang, Yang
    Yu, Zhangsheng
    [J]. STATISTICA SINICA, 2021, 31 (04) : 1707 - 1725
  • [3] Space-varying regression models: specifications and simulation
    Gamerman, D
    Moreira, ARB
    Rue, H
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 42 (03) : 513 - 533
  • [4] Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients
    Wei, Hongjie
    Sun, Yan
    [J]. SPATIAL ECONOMIC ANALYSIS, 2017, 12 (01) : 113 - 128
  • [5] A multivariate Poisson regression model for count data
    Munoz-Pichardo, J. M.
    Pino-Mejias, R.
    Garcia-Heras, J.
    Ruiz-Munoz, F.
    Luz Gonzalez-Regalado, M.
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) : 2525 - 2541
  • [6] Inference of a time-varying coefficient regression model for multivariate panel count data
    Guo, Yuanyuan
    Sun, Dayu
    Sun, Jianguo
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [7] Space-varying regression coefficients: A semi-parametric approach applied to real estate markets
    Pavlov, AD
    [J]. REAL ESTATE ECONOMICS, 2000, 28 (02) : 249 - 283
  • [8] Multivariate claim count regression model with varying dispersion and dependence parameters
    Jeong, Himchan
    Tzougas, George
    Fung, Tsz Chai
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2023, 186 (01) : 61 - 83
  • [9] Partially linear hazard regression with varying coefficients for multivariate survival data
    Cai, Jianwen
    Fan, Jianqing
    Jiang, Jiancheng
    Zhou, Haibo
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 141 - 158
  • [10] MODEL FOR SPACE-VARYING CONE PLACEMENT IN THE FOVEA
    POIRSON, A
    AHUMADA, A
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (13): : P70 - P70