Multivariate claim count regression model with varying dispersion and dependence parameters

被引:4
|
作者
Jeong, Himchan [1 ,4 ]
Tzougas, George [2 ]
Fung, Tsz Chai [3 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Heriot Watt Univ, Dept Actuarial Math & Stat, Edinburgh, Scotland
[3] Georgia State Univ, Dept Risk Management & Insurance, Atlanta, GA USA
[4] Simon Fraser Univ, Dept Stat & Actuarial Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
关键词
bivariate Poisson-lognormal regression model with varying dispersion; copulas; correlations of different signs and magnitude; dispersion and dependence parameters; Monte Carlo expectation-maximization algorithm; multivariate claim frequency modelling; POISSON REGRESSION; SAMPLE SELECTION; MOTOR INSURANCE; DISTRIBUTIONS; CREDIBILITY; ASSUMPTIONS; LIKELIHOOD; DISCRETE; COPULAS; FAMILY;
D O I
10.1093/jrsssa/qnac010
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
The aim of this paper is to present a regression model for multivariate claim frequency data with dependence structures across the claim count responses, which may be of different sign and range, and overdispersion from the unobserved heterogeneity due to systematic effects in the data. For illustrative purposes, we consider the bivariate Poisson-lognormal regression model with varying dispersion. Maximum likelihood estimation of the model parameters is achieved through a novel Monte Carlo expectation-maximization algorithm, which is shown to have a satisfactory performance when we exemplify our approach to Local Government Property Insurance Fund data from the state of Wisconsin.
引用
收藏
页码:61 / 83
页数:23
相关论文
共 50 条
  • [1] The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters
    Tzougas, George
    Makariou, Despoina
    [J]. RISK MANAGEMENT AND INSURANCE REVIEW, 2022, 25 (04) : 401 - 417
  • [2] A Multivariate Claim Count Model for Applications in Insurance
    Aalabaf-Sabaghi, Morteza
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (01) : 406 - 406
  • [3] A model with space-varying regression coefficients for clustering multivariate spatial count data
    Lagona, Francesco
    Ranalli, Monia
    Barbi, Elisabetta
    [J]. BIOMETRICAL JOURNAL, 2020, 62 (06) : 1508 - 1524
  • [4] Inference of a time-varying coefficient regression model for multivariate panel count data
    Guo, Yuanyuan
    Sun, Dayu
    Sun, Jianguo
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [5] Bayesian quantile regression model for claim count data
    Fuzi, Mohd Fadzli Mohd
    Jemain, Abdul Aziz
    Ismail, Noriszura
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2016, 66 : 124 - 137
  • [6] A multivariate Poisson regression model for count data
    Munoz-Pichardo, J. M.
    Pino-Mejias, R.
    Garcia-Heras, J.
    Ruiz-Munoz, F.
    Luz Gonzalez-Regalado, M.
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) : 2525 - 2541
  • [7] A flexible count regression model with varying precision
    Lemonte, Artur J.
    [J]. APPLIED MATHEMATICAL MODELLING, 2024, 131 : 559 - 569
  • [8] GAMLSS for Longitudinal Multivariate Claim Count Models
    Turcotte, Roxane
    Boucher, Jean-Philippe
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2024, 28 (02) : 337 - 360
  • [9] A Simple and Adaptive Dispersion Regression Model for Count Data
    Klakattawi, Hadeel S.
    Vinciotti, Veronica
    Yu, Keming
    [J]. ENTROPY, 2018, 20 (02):
  • [10] Preservation of multivariate dependence under multivariate claim models
    Hu, TZ
    Pan, XM
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 1999, 25 (02): : 171 - 179