Deactivation and regeneration of carbon nanotubes and nitrogen-doped carbon nanotubes in catalytic peroxymonosulfate activation for phenol degradation: variation of surface functionalities

被引:40
|
作者
Hou, Jifei [1 ]
Xu, Lixia [1 ]
Han, Yuxiang [1 ]
Tang, Yuqiong [1 ]
Wan, Haiqin [1 ]
Xu, Zhaoyi [1 ]
Zheng, Shourong [1 ]
机构
[1] Nanjing Univ, Sch Environm, Jiangsu Key Lab Vehicle Emiss Control, State Key Lab Pollut Control & Resource Reuse, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
REDUCED GRAPHENE OXIDE; POTENTIOMETRIC MASS TITRATIONS; REACTIVE RADICALS; PERSULFATE ACTIVATION; ORGANIC POLLUTANTS; AZO-DYE; OXIDATION; SULFATE; OXYGEN; NANODIAMONDS;
D O I
10.1039/c8ra07696k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reuse, deactivation and regeneration of carbon nanotubes (CNT) and N-doped carbon nanotubes (NCNT) were studied in catalytic peroxymonosulfate (PMS) activation for phenol degradation. The results showed that for catalytic PMS activation, marked deactivation was observed on both CNT and NCNT, resulting in marked variation of the surface functionalities of the catalysts. Catalytic PMS activation led to markedly increased oxygen-containing functionalities and decreased points of zero charge (PZCs) of CNT and NCNT. The catalytic activity of CNT was strongly dependent on the initial PMS concentration but was independent of the initial phenol concentration. Furthermore, the dependency of the CNT activity on the initial PMS concentration closely followed the Langmuir-Hinshelwood model, indicating that the catalytic activation of adsorbed PMS was the rate controlling step. For the used CNT and NCNT, chemical reduction by NaBH4 or thermal treatment regeneration under inert atmosphere could effectively remove surface O-containing functionalities and enhance PZCs, restoring their catalytic activities; meanwhile, the N-containing functionalities of NCNT decreased with regeneration treatment, resulting in a negative impact on catalyst regeneration. The present findings indicate that surface functionalities are closely correlated with catalyst deactivation and regeneration, playing crucial roles in the catalytic activation of PMS.
引用
收藏
页码:974 / 983
页数:10
相关论文
共 50 条
  • [41] Nitrogen-doped carbon nanotubes as a metal catalyst support
    Mabena L.F.
    Sinha Ray S.
    Mhlanga S.D.
    Coville N.J.
    Applied Nanoscience, 2011, 1 (2) : 67 - 77
  • [42] Synthesis and Electrochemical Performance of Nitrogen-Doped Carbon Nanotubes
    Li Li-Xiang
    Liu Yong-Chang
    Geng Xin
    An Bai-Gang
    ACTA PHYSICO-CHIMICA SINICA, 2011, 27 (02) : 443 - 448
  • [43] Synthesis and thermoelectric power of nitrogen-doped carbon nanotubes
    Sadanadan, B
    Savage, T
    Bhattacharya, S
    Tritt, T
    Cassell, A
    Meyyappan, M
    Dai, ZR
    Wang, ZL
    Zidan, R
    Rao, AM
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2003, 3 (1-2) : 99 - 103
  • [44] Preparation of highly oxidized nitrogen-doped carbon nanotubes
    Wei, Jinquan
    Lv, Ruitao
    Guo, Ning
    Wang, Hongguang
    Bai, Xi
    Mathkar, Akshay
    Kang, Feiyu
    Zhu, Hongwei
    Wang, Kunlin
    Wu, Dehai
    Vajtai, Robert
    Ajayan, Pulickel M.
    NANOTECHNOLOGY, 2012, 23 (15)
  • [45] The preparation of nitrogen-doped carbon nanotubes from pyridine
    Zhu, SB
    Sun, SX
    Zhou, WW
    Xu, JJ
    Li, Y
    ACTA PHYSICO-CHIMICA SINICA, 2004, 20 (11) : 1320 - 1323
  • [46] MICROWAVE IRRADIATION OF RUTHENIUM ON NITROGEN-DOPED CARBON NANOTUBES
    Mabena, Letlhogonolo F.
    Ray, Suprakas Sinha
    Coville, Neil J.
    NANOSTRUCTURED MATERIALS AND NANOTECHNOLOGY V, 2011, 32 (07): : 33 - 42
  • [47] Ab initio study of nitrogen-doped carbon nanotubes
    Yu, S. S.
    Wen, Q. B.
    Zheng, W. T.
    Jiang, Q.
    NANO, 2007, 2 (03) : 181 - 188
  • [48] Tearing open nitrogen-doped multiwalled carbon nanotubes
    Meier, Mark S.
    Andrews, Rodney
    Jacques, David
    Cassity, Kelby B.
    Qian, Dali
    JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (35) : 4143 - 4145
  • [49] Resolution of the binding configuration in nitrogen-doped carbon nanotubes
    Chan, LH
    Hong, KH
    Xiao, DQ
    Lin, TC
    Lai, SH
    Hsieh, WJ
    Shih, HC
    PHYSICAL REVIEW B, 2004, 70 (12) : 125408 - 1
  • [50] Activation of the Surface of Carbon and Nitrogen-Doped Carbon Nanotubes by Calcium Nitrate: Catalytic Properties of Cobalt Supported Catalysts of the Fischer–Tropsch Process Based on Them
    E. V. Suslova
    S. V. Savilov
    A. V. Egorov
    V. V. Lunin
    Kinetics and Catalysis, 2019, 60 : 87 - 95