Effects of orbital and Coulomb potential in strong-field nonadiabatic tunneling ionization of atoms

被引:20
|
作者
Liu, Ming-Ming [1 ,2 ]
Li, Min [3 ,4 ]
Shao, Yun [1 ,2 ]
Han, Meng [1 ,2 ]
Gong, Qihuang [1 ,2 ,5 ]
Liu, Yunquan [1 ,2 ,5 ]
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[5] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
ABOVE-THRESHOLD IONIZATION; BARRIER; CYCLE;
D O I
10.1103/PhysRevA.96.043410
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the intensity-dependent photoelectron differential momentum distributions from tunneling ionization of Kr and Xe atoms in circularly polarized laser fields. We measure the width of photoelectron momentum distribution along the laser propagation direction in conjunction with the most probable momentum in the polarization plane. The predictions of the available tunneling models do not agree with the measurement. We further present a semiclassical model for strong-field tunneling ionization of atoms in circularly polarized laser fields, in which we include the effect of the initial orbitals with different magnetic quantum numbers. Using this model, we quantify the relative contributions of the initial orbitals with different magnetic quantum numbers to the photoelectron differential momentum distributions. We achieve good agreement with the measurement, which does not depend on calibration of the laser intensity. Both the atomic orbitals and the long-range Coulomb potential have significant effects on the quantitative description of strong-field tunneling ionization of atoms.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Nondipole effects in strong-field ionization
    Ivanov, I. A.
    Dubau, J.
    Kim, Kyung Taec
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [32] Exploring tunneling time by instantaneous ionization rate in strong-field ionization
    Yuan, Minghu
    Xin, PeiPei
    Chu, TianShu
    Liu, HongPing
    OPTICS EXPRESS, 2017, 25 (19): : 23493 - 23501
  • [33] Coulomb-corrected quantum trajectories in strong-field ionization
    Popruzhenko, S. V.
    Paulus, G. G.
    Bauer, D.
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [34] Persistence of Coulomb focusing during ionization in the strong-field regime
    Berman, S. A.
    Chandre, C.
    Uzer, T.
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [35] Nonadiabatic strong-field ionization of aligned N2 molecules
    Li, Zichen
    Ge, Peipei
    Yan, Jiaqing
    Xie, Wenhai
    Liu, Yang
    Liu, Yupeng
    Liu, Weibin
    Liu, Kunlong
    Zhou, Yueming
    Li, Min
    Lu, Peixiang
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [36] Experimental verification of the nonadiabatic effect in strong-field ionization with elliptical polarization
    Li, Min
    Liu, Ming-Ming
    Geng, Ji-Wei
    Han, Meng
    Sun, Xufei
    Shao, Yun
    Deng, Yongkai
    Wu, Chengyin
    Peng, Liang-You
    Gong, Qihuang
    Liu, Yunquan
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [37] Visualization of subcycle nonadiabatic-nondipole coupling in strong-field ionization
    Mao, Xiaodan
    Ni, Hongcheng
    Wu, Jian
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [38] Photoelectron holography in strong-field tunneling ionization by a spatially inhomogeneous field
    Chen, Yongkun
    Zhou, Yueming
    Tan, Jia
    Li, Min
    Cao, Wei
    Lu, Peixiang
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [39] Transverse electron momentum distributions in strong-field ionization: nondipole and Coulomb focusing effects
    Haram, Nida
    Sang, Robert T.
    Litvinyuk, Igor, V
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (15)
  • [40] Excited-state resonance tunneling in strong-field ionization
    Jia, Lijuan
    Xing, Haijun
    Fu, Libin
    PHYSICAL REVIEW A, 2022, 106 (02)