Deep Learning-Based Carotid Artery Vessel Wall Segmentation in Black-Blood MRI Using Anatomical Priors

被引:7
|
作者
Alblas, Dieuwertje [1 ]
Brune, Christoph [1 ]
Wolterink, Jelmer M. [1 ]
机构
[1] Univ Twente, Tech Med Ctr, Dept Appl Math, Enschede, Netherlands
来源
关键词
Carotid artery; black-blood MRI; deep learning; polar coordinates; vessel wall segmentation; inductive bias; CNN;
D O I
10.1117/12.2611112
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Carotid artery vessel wall thickness measurement is an essential step in the monitoring of patients with atherosclerosis. This requires accurate segmentation of the vessel wall, i.e., the region between an artery's lumen and outer wall, in black-blood magnetic resonance (MR) images. Commonly used convolutional neural networks (CNNs) for semantic segmentation are suboptimal for this task as their use does not guarantee a contiguous ring-shaped segmentation. Instead, in this work, we cast vessel wall segmentation as a multi-task regression problem in a polar coordinate system. For each carotid artery in each axial image slice, we aim to simultaneously find two non-intersecting nested contours that together delineate the vessel wall. CNNs applied to this problem enable an inductive bias that guarantees ring-shaped vessel walls. Moreover, we identify a problem-specific training data augmentation technique that substantially affects segmentation performance. We apply our method to segmentation of the internal and external carotid artery wall, and achieve top-ranking quantitative results in a public challenge, i.e., a median Dice similarity coefficient of 0.813 for the vessel wall and median Hausdorff distances of 0.552 mm and 0.776 mm for lumen and outer wall, respectively. Moreover, we show how the method improves over a conventional semantic segmentation approach. These results show that it is feasible to automatically obtain anatomically plausible segmentations of the carotid vessel wall with high accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Correlation of noninvasive imaging of vulnerable carotid artery plaque using NaF and FDG PET/CT and black-blood MRI with cerebral ischemia on brain MRI
    Norikane, Takashi
    Yamamoto, Yuka
    Maeda, Yukito
    Okada, Masaki
    Nishiyama, Yoshihiro
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [42] Intracranial Vessel Segmentation in 3D High-Resolution T1 Black-Blood MRI
    Elsheikh, S.
    Urbach, H.
    Reisert, M.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2022, 43 (12) : 1719 - 1721
  • [43] Carotid artery stenting for vulnerable plaque detected by black-blood MRI: a study using both optimal coherence tomography and intravascular ultrasound
    Suzuki, M.
    Doi, N.
    Hashimoto, Y.
    Ishihara, S.
    Hirai, K.
    Fujimoto, H.
    Isojima, T.
    Naito, M.
    Iwama, H.
    Nakai, T.
    EUROPEAN HEART JOURNAL, 2014, 35 : 178 - 178
  • [44] DEEP LEARNING WITH ANATOMICAL PRIORS: IMITATING ENHANCED AUTOENCODERS IN LATENT SPACE FOR IMPROVED PELVIC BONE SEGMENTATION IN MRI
    Pham, D. D.
    Dovletov, G.
    Warwas, S.
    Landgraeber, S.
    Jaeger, M.
    Pauli, J.
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1166 - 1169
  • [45] Detectability of intracranial vessel wall atherosclerosis using black-blood spectral CT: a phantom and clinical study
    Zhang, Fan
    Yao, Hui
    Langzam, Eran
    Meng, Qinglin
    Meng, Xiao
    van der Geest, Rob J.
    Luo, Chuncai
    Zhang, Tengyuan
    Li, Jianyong
    Xiong, Jianmei
    Deng, Weiwei
    Chen, Ke
    Zheng, Yangrui
    Wu, Jingping
    Cui, Fang
    Yang, Li
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [46] Black-blood dynamic contrast-enhanced coronary artery wall MRI: a potential tool for kinetic-modeling-based wall inflammation assessment
    Z Fan
    J Xie
    Y He
    Y Natsuaki
    N Jin
    DS Berman
    D Li
    Journal of Cardiovascular Magnetic Resonance, 15 (Suppl 1)
  • [47] Assessment of coronary artery disease wall thickening using phase-sensitive black-blood MRI: initial experience for the evaluation of coronary artery disease
    Khaled Abd-Elmoniem
    Roderic I Pettigrew
    Ahmed Gharib
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [48] Deep learning-based automatic segmentation of cerebral infarcts on diffusion MRI
    Wi-Sun Ryu
    Dawid Schellingerhout
    Jonghyeok Park
    Jinyong Chung
    Sang-Wuk Jeong
    Dong-Seok Gwak
    Beom Joon Kim
    Joon-Tae Kim
    Keun-Sik Hong
    Kyung Bok Lee
    Tai Hwan Park
    Sang-Soon Park
    Jong-Moo Park
    Kyusik Kang
    Yong-Jin Cho
    Hong-Kyun Park
    Byung-Chul Lee
    Kyung-Ho Yu
    Mi Sun Oh
    Soo Joo Lee
    Jae Guk Kim
    Jae-Kwan Cha
    Dae-Hyun Kim
    Jun Lee
    Man Seok Park
    Dongmin Kim
    Oh Young Bang
    Eung Yeop Kim
    Chul-Ho Sohn
    Hosung Kim
    Hee-Joon Bae
    Dong-Eog Kim
    Scientific Reports, 15 (1)
  • [49] Carotid Plaque Assessment Using Fast 3D Isotropic Resolution Black-Blood MRI
    Balu, Niranjan
    Yarnykh, Vasily L.
    Chu, Baocheng
    Wang, Jinnan
    Hatsukami, Thomas
    Yuan, Chun
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (03) : 627 - 637
  • [50] Deep Learning-Based Automated Detection of Arterial Vessel Wall and Plaque on Magnetic Resonance Vessel Wall Images
    Xu, Wenjing
    Yang, Xiong
    Li, Yikang
    Jiang, Guihua
    Jia, Sen
    Gong, Zhenhuan
    Mao, Yufei
    Zhang, Shuheng
    Teng, Yanqun
    Zhu, Jiayu
    He, Qiang
    Wan, Liwen
    Liang, Dong
    Li, Ye
    Hu, Zhanli
    Zheng, Hairong
    Liu, Xin
    Zhang, Na
    FRONTIERS IN NEUROSCIENCE, 2022, 16