The space L1(Lp) is primary for 1 < p < ∞

被引:1
|
作者
Lechner, Richard [1 ]
Motakis, Pavlos [2 ]
Mueller, Paul F. X. [1 ]
Schlumprecht, Thomas [3 ,4 ]
机构
[1] Johannes Kepler Univ Linz, Inst Anal, Altenberger Str 69, A-4040 Linz, Austria
[2] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, Canada
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Czech Tech Univ, Fac Elect Engn, Zikova 4, Prague 16627, Czech Republic
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
MULTIPLIERS; LP; SUBSPACES;
D O I
10.1017/fms.2022.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Banach space L-1 (L-p) consists of measurable scalar functions f on the unit square for which parallel to integral parallel to = integral(1)(0) (integral(1)(0) vertical bar f(x, y)vertical bar(p) dy)(1/p) dx < infinity. We show that L-1(L-p) (1 < p < infinity) is primary, meaning that whenever L-1(L-p) = E circle plus F, where E and F are closed subspaces of L-1(L-p), then either E or F is isomorphic to L-1(L-p). More generally, we show that L-1 (X) is primary for a large class of rearrangement-invariant Banach function spaces.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Asymptotic representation of Lp-minimal polynomials, 1 &lt; p &lt; ∞
    Kroo, Andras
    Peherstorfer, Franz
    CONSTRUCTIVE APPROXIMATION, 2007, 25 (01) : 29 - 39
  • [22] On the structural properties of the weight space L p(x),ω for 0 &lt; p(x) &lt; 1
    Bandaliev, R. A.
    MATHEMATICAL NOTES, 2014, 95 (3-4) : 450 - 462
  • [23] On the duals of LP spaces with 0&lt;p&lt;1
    Farkas, B
    ACTA MATHEMATICA HUNGARICA, 2003, 98 (1-2) : 71 - 77
  • [24] Jackson theorem in Lp, 0 &lt; p &lt; 1, for functions on the sphere
    Dai, F.
    Ditzian, Z.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) : 382 - 391
  • [25] Unconditionality of general Franklin systems in Lp[0,1], 1 &lt; p &lt; ∞
    Gevorkyan, GG
    Kamont, A
    STUDIA MATHEMATICA, 2004, 164 (02) : 161 - 204
  • [26] Approximation in Muntz Spaces M,p of Lp Functions for 1 &lt; p &lt; and Bases
    Ludkowski, Sergey V.
    MATHEMATICS, 2017, 5 (01)
  • [27] Adaptive Lp (0 &lt; p &lt; 1) Regularization: Oracle Property and Applications
    Shi, Yunxiao
    He, Xiangnan
    Wu, Han
    Jin, Zhong-Xiao
    Lu, Wenlian
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 13 - 23
  • [28] Quasi-greedy bases in lp(0 &lt; p &lt; 1) are democratic
    Albiac, Fernando
    Ansorena, Jose L.
    Wojtaszczyk, Przemyslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
  • [29] On moduli of smoothness and Fourier multipliers in Lp , 0 &lt; p&lt; 1
    Kolomoitsev Yu.S.
    Ukrainian Mathematical Journal, 2007, 59 (9) : 1364 - 1384
  • [30] Haar approximation from within for Lp(Rd), 0 &lt; p &lt; 1
    Benedetto, John J.
    Njeunje, Franck Olivier Ndjakou
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2021, 19 (01):