机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1 C1428EGA, Buenos Aires, DF, Argentina
IMAS CONICET, Ciudad Univ,Pabellon 1 C1428EGA, Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1 C1428EGA, Buenos Aires, DF, Argentina
Olivo, Andrea
[1
,2
]
Shmerkin, Pablo
论文数: 0引用数: 0
h-index: 0
机构:
Torcuato Di Tella Univ, Dept Math & Stat, Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1 C1428EGA, Buenos Aires, DF, Argentina
Shmerkin, Pablo
[3
,4
]
机构:
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1 C1428EGA, Buenos Aires, DF, Argentina
[2] IMAS CONICET, Ciudad Univ,Pabellon 1 C1428EGA, Buenos Aires, DF, Argentina
[3] Torcuato Di Tella Univ, Dept Math & Stat, Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
We study discretized maximal operators associated to averaging over (neighborhoods of) squares in the plane and, more generally, k-skeletons in R-n. Although these operators are known not to be bounded on any L-p, we obtain nearly sharp L-p bounds for every small discretization scale. These results are motivated by, and partially extend, recent results of Keleti, Nagy and Shmerkin, and of Thornton, on sets that contain a scaled k-sekeleton of the unit cube with center in every point of R-n.