MAXIMAL OPERATORS FOR CUBE SKELETONS

被引:2
|
作者
Olivo, Andrea [1 ,2 ]
Shmerkin, Pablo [3 ,4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1 C1428EGA, Buenos Aires, DF, Argentina
[2] IMAS CONICET, Ciudad Univ,Pabellon 1 C1428EGA, Buenos Aires, DF, Argentina
[3] Torcuato Di Tella Univ, Dept Math & Stat, Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
关键词
Averages over skeletons; maximal functions;
D O I
10.5186/aasfm.2020.4513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study discretized maximal operators associated to averaging over (neighborhoods of) squares in the plane and, more generally, k-skeletons in R-n. Although these operators are known not to be bounded on any L-p, we obtain nearly sharp L-p bounds for every small discretization scale. These results are motivated by, and partially extend, recent results of Keleti, Nagy and Shmerkin, and of Thornton, on sets that contain a scaled k-sekeleton of the unit cube with center in every point of R-n.
引用
收藏
页码:467 / 478
页数:12
相关论文
共 50 条
  • [21] The Number of Maximal Independent Sets in the Hamming Cube
    Jeff Kahn
    Jinyoung Park
    Combinatorica, 2022, 42 : 853 - 880
  • [22] On the Boundedness Problem of Maximal Operators
    Usmanov, S. E.
    RUSSIAN MATHEMATICS, 2022, 66 (04) : 74 - 83
  • [23] DOMAINS OF MAXIMAL MONOTONE OPERATORS
    WEYER, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (03) : 491 - 493
  • [24] Maximal operators on hyperbolic triangles
    Branchereau, Romain
    Bronstein, Samuel
    Gauvan, Anthony
    COLLECTANEA MATHEMATICA, 2025, 76 (01) : 51 - 63
  • [25] On maximal operators along surfaces
    Hung Viet Le
    Integral Equations and Operator Theory, 2000, 37 : 64 - 71
  • [26] Regular Maximal Monotone Operators
    Andrei Verona
    Maria E. Verona
    Set-Valued Analysis, 1998, 6 : 303 - 312
  • [27] ON THE HARMONIC AND GEOMETRIC MAXIMAL OPERATORS
    Duffee, Linden Anne
    Moen, Kabe
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 265 - 286
  • [28] A Characterization of Maximal Monotone Operators
    Loehne, Andreas
    SET-VALUED ANALYSIS, 2008, 16 (5-6): : 693 - 700
  • [29] Beyond Local Maximal Operators
    Hannes Luiro
    Antti V. Vähäkangas
    Potential Analysis, 2017, 46 : 201 - 226
  • [30] Multilinear Cesaro maximal operators
    Bernardis, A. L.
    Crescimbeni, R.
    Martin-Reyes, F. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) : 191 - 204