Nanoscale Elastic Changes in 2D Ti3C2Tx (MXene) Pseudocapacitive Electrodes

被引:118
|
作者
Come, Jeremy [1 ]
Xie, Yu [1 ]
Naguib, Michael [3 ]
Jesse, Stephen [1 ]
Kalinin, Sergei V. [1 ]
Gogotsi, Yury [4 ,5 ]
Kent, Paul R. C. [1 ,2 ]
Balke, Nina [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, POB 2008, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[4] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[5] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
关键词
TRANSITION-METAL CARBIDES; 2-DIMENSIONAL TITANIUM CARBIDE; FORCE ACOUSTIC MICROSCOPY; HIGH VOLUMETRIC CAPACITANCE; LITHIUM-ION BATTERIES; CATION INTERCALATION; ENERGY-STORAGE; GRAPHENE; SPECTROSCOPY; EXTRACTION;
D O I
10.1002/aenm.201502290
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in situ characterization of their evolution has never been achieved at the nanoscale. It is reported here with in situ imaging, combined with density functional theory of the elastic changes of a 2D titanium carbide (Ti3C2Tx) based electrode in direction normal to the basal plane (electrode surface) during alkaline cation intercalation/extraction. 2D carbides, known as MXenes, are promising new materials for supercapacitors and various kinds of batteries, and understanding the coupling between their mechanical and electrochemical properties is therefore necessary. The results show a strong correlation between the cations content and the out-of-plane elastic modulus. This strategy enables identifying the preferential intercalation pathways within a single particle, which is important for understanding ionic transport in these materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Piezoresistive Sensors Based on Electrospun Mats Modified by 2D Ti3C2Tx MXene
    Sobolciak, Patrik
    Tanvir, Aisha
    Sadasivuni, Kishor Kumar
    Krupa, Igor
    SENSORS, 2019, 19 (20)
  • [22] Antibacterial Activity of Ti3C2Tx MXene
    Rasool, Kashif
    Helal, Mohamed
    Ali, Adnan
    Ren, Chang E.
    Gogotsi, Yury
    Mahmoud, Khaled A.
    ACS NANO, 2016, 10 (03) : 3674 - 3684
  • [23] Enhancing the magnetism of 2D carbide MXene Ti3C2Tx by H2 annealing
    Zhang, Kaiyu
    Di, Maoyun
    Fu, Lin
    Deng, Yu
    Du, Youwei
    Tang, Nujiang
    CARBON, 2020, 157 : 90 - 96
  • [24] Scalable Synthesis of Ti3C2Tx MXene
    Shuck, Christopher E.
    Sarycheva, Asia
    Anayee, Mark
    Levitt, Ariana
    Zhu, Yuanzhe
    Uzun, Simge
    Balitskiy, Vitaliy
    Zahorodna, Veronika
    Gogotsi, Oleksiy
    Gogotsi, Yury
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (03)
  • [25] Supramolecular Engineering of Ti3C2Tx MXene -Perylene Diimide Hybrid Electrodes for the Pseudocapacitive Electrochemical Storage of Calcium Ions
    Goudar, Soujanya H.
    Bhoi, Shubham
    Sahoo, Saroj Kumar
    Rao, Kotagiri Venkata
    Kurra, Narendra
    SMALL, 2024, 20 (26)
  • [26] Synthesis of 2D Ti3C2Tx MXene and MXene-based composites for flexible strain and pressure sensors
    Zeng, Yuping
    Wu, Wei
    NANOSCALE HORIZONS, 2021, 6 (11) : 893 - 906
  • [27] The Ti3C2Tx MXene coated metal mesh electrodes for stretchable supercapacitors
    Weng, Li
    Qi, Fangya
    Min, Yonggang
    MATERIALS LETTERS, 2020, 278
  • [28] Electromagnetic Interference Shielding Properties of 2D MXene (Ti3C2Tx) by Metal nanoparticles Loading
    Rajavel, Krishnamoorthy
    Zhu, Pengli
    Sun, Rong
    Wong, Chingping
    ICEPT2019: THE 2019 20TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, 2019,
  • [29] Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination
    Guo, Lu
    Wang, Xianfen
    Leong, Zhi Yi
    Mo, Runwei
    Sun, Linfeng
    Yang, Hui Ying
    FLATCHEM, 2018, 8 : 17 - 24
  • [30] A New Memristor with 2D Ti3C2Tx MXene Flakes as an Artificial Bio-Synapse
    Yan, Xiaobing
    Wang, Kaiyang
    Zhao, Jianhui
    Zhou, Zhenyu
    Wang, Hong
    Wang, Jingjuan
    Zhang, Lei
    Li, Xiaoyan
    Xiao, Zuoao
    Zhao, Qianlong
    Pei, Yifei
    Wang, Gong
    Qin, Cuiya
    Li, Hui
    Lou, Jianzhong
    Liu, Qi
    Zhou, Peng
    SMALL, 2019, 15 (25)