Data-Driven Pilot Behavior Modeling Applied to an Aircraft Offset Landing Task

被引:0
|
作者
Turetta, Felipe M. S. [1 ]
Hultmann Ayala, Helon Vicente [2 ]
Trabasso, Luis G. [3 ,5 ]
Coelho, Leandro S. [2 ]
Alfredson, Jens [4 ,5 ]
机构
[1] EMBRAER Syst Modeling & Simulat, Av Jose Candido Silveira 2000, Belo Horizonte, MG, Brazil
[2] PUCPR Ind & Syst Engn Grad Program, R Imaculada Conceicao 1155, Curitiba, Parana, Brazil
[3] Inst Tecnol Aeronaut, DCTA, Dept Mech Engn, Sao Jose Dos Campos, Brazil
[4] Saab Aeronaut, Linkoping, Sweden
[5] Linkoping Univ, Dept Comp & Informat Sci, IDA, Linkoping, Sweden
关键词
Human factors; Human pilot modeling; Neural networks; NEURAL-NETWORK;
D O I
10.1007/978-3-319-60441-1_12
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
This paper shows studies for the development of a mathematical model that adequately represents a pilot behavior in the specific task of offset landing, using data-driven modeling techniques. Flight test data was used for the identification procedure. Considerations on the pilot's cognitive process and mathematical modeling possibilities were discussed to select the most appropriate inputs and outputs for the model. This data was used to identify the model using artificial neural network techniques. The models obtained were validated against the identification data and different data not used in the training process to evaluate the quality of the models. Conclusions include the difficulties of showing the generalization capabilities of those non-linear models and further studies.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 50 条
  • [31] Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue
    Vahidullah Tac
    Vivek D. Sree
    Manuel K. Rausch
    Adrian B. Tepole
    Engineering with Computers, 2022, 38 : 4167 - 4182
  • [32] Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue
    Tac, Vahidullah
    Sree, Vivek D.
    Rausch, Manuel K.
    Tepole, Adrian B.
    ENGINEERING WITH COMPUTERS, 2022, 38 (05) : 4167 - 4182
  • [33] Learning Objective Agent Behavior using a Data-driven Modeling Approach
    Kamrani, Farzad
    Luotsinen, Linus J.
    Lovlid, Rikke Amilde
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 2175 - 2181
  • [34] Dynamic behavior of nonlinear Goodwin oscillator based on data-driven modeling
    Liang, Yanming
    Guo, Yongfeng
    CHINESE JOURNAL OF PHYSICS, 2025, 95 : 287 - 297
  • [35] Data-Driven System Reliability and Failure Behavior Modeling Using FMECA
    Khorshidi, Hadi Akbarzade
    Gunawan, Indra
    Ibrahim, M. Yousef
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (03) : 1253 - 1260
  • [36] Data-Driven Aircraft Estimated Time of Arrival Prediction
    Kern, Christian Strottmann
    de Medeiros, Ivo Paixao
    Yoneyama, Takashi
    2015 9TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2015, : 727 - 733
  • [37] Data-Driven Model to Predict Aircraft Vibration Environment
    Fevrier, Stephane
    Mathelin, Lionel
    Nachar, Stephane
    Giordano, Frederic
    Podvin, Berengere
    AIAA JOURNAL, 2023, 61 (10) : 4610 - 4622
  • [38] Framework for Offline Data-Driven Aircraft Fault Diagnosis
    Kraemer, Aline Dahleni
    Villani, Emilia
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2024, 21 (04): : 348 - 361
  • [39] Data-driven modeling of acoustical instruments
    Schoner, B
    Cooper, C
    Douglas, C
    Gershenfed, N
    JOURNAL OF NEW MUSIC RESEARCH, 1999, 28 (02) : 81 - 89
  • [40] Data-Driven Synthetic Modeling of Trees
    Zhang, Xiaopeng
    Li, Hongjun
    Dai, Mingrui
    Ma, Wei
    Quan, Long
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (09) : 1214 - 1226