Affine Processes on Symmetric Cones

被引:13
|
作者
Cuchiero, Christa [1 ]
Keller-Ressel, Martin [2 ]
Mayerhofer, Eberhard [3 ]
Teichmann, Josef [4 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Tech Univ Dresden, Inst Math Stochast, D-01062 Dresden, Germany
[3] Dublin City Univ, Dublin 9, Ireland
[4] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Affine processes; Symmetric cones; Non-central Wishart distribution; Wishart processes; DIFFUSIONS; MATRICES; ALGEBRA; SPACE;
D O I
10.1007/s10959-014-0580-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider affine Markov processes taking values in convex cones. In particular, we characterize all affine processes taking values in irreducible symmetric cones in terms of certain L,vy-Khintchine triplets. This is the natural, coordinate-free formulation of the theory of Wishart processes on positive semidefinite matrices, as put forward by Bru (J Theor Probab 4(4):725-751, 1991) and Cuchiero et al. (Ann Appl Probab 21(2):397-463, 2011), in the more general context of symmetric cones, which also allows for simpler, alternative proofs.
引用
收藏
页码:359 / 422
页数:64
相关论文
共 50 条
  • [1] Affine Processes on Symmetric Cones
    Christa Cuchiero
    Martin Keller-Ressel
    Eberhard Mayerhofer
    Josef Teichmann
    Journal of Theoretical Probability, 2016, 29 : 359 - 422
  • [2] Geometric ergodicity of affine processes on cones
    Mayerhofer, Eberhard
    Stelzer, Robert
    Vestweber, Johanna
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 4141 - 4173
  • [3] Symmetric stable processes in cones
    Bañuelos, R
    Bogdan, K
    POTENTIAL ANALYSIS, 2004, 21 (03) : 263 - 288
  • [4] Symmetric Stable Processes in Cones
    Rodrigo Bañuelos
    Krzysztof Bogdan
    Potential Analysis, 2004, 21 : 263 - 288
  • [5] Jordan Algebras and Dual Affine Connections on Symmetric Cones
    Keiko Uohashi
    Atsumi Ohara
    Positivity, 2004, 8 : 369 - 378
  • [6] Jordan algebras and dual affine connections on symmetric cones
    Uohashi, K
    Ohara, A
    POSITIVITY, 2004, 8 (04) : 369 - 378
  • [7] Exit times from cones in Rn of symmetric stable processes
    Méndez-Hernández, PJ
    ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (01) : 155 - 163
  • [8] ERGODICITY OF AFFINE PROCESSES ON THE CONE OF SYMMETRIC POSITIVE SEMIDEFINITE MATRICES
    Friesen, Martin
    Jin, Peng
    Kremer, Jonas
    Ruediger, Barbara
    ADVANCES IN APPLIED PROBABILITY, 2020, 52 (03) : 825 - 854
  • [9] Group Actions on Affine Cones
    Kishimoto, Takashi
    Prokhorov, Yuri
    Zaidenberg, Mikhail
    AFFINE ALGEBRAIC GEOMETRY: THE RUSSELL FESTSCHRIFT, 2011, 54 : 123 - 163
  • [10] Loos symmetric cones
    Jimmie Lawson
    Positivity, 2019, 23 : 1225 - 1243