The Research about Recurrent Model-Agnostic Meta Learning

被引:1
|
作者
Chen, Shaodong [1 ]
Niu, Ziyu [2 ]
机构
[1] Nanyang Inst Technol, Sch Math & Stat, Nanyang, Henan, Peoples R China
[2] Univ Edinburgh, Sch Informat, Artificial Intelligence, Edinburgh, Midlothian, Scotland
关键词
Model-Agnostic Meta Learning; Omniglot dataset; Convolutional Neural Network; Recurrent Neural Network; Long Short-Term Memory; Gated Recurrent Unit; n-way n-shot model;
D O I
10.3103/S1060992X20010075
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Although Deep Neural Networks (DNNs) have performed great success in machine learning domain, they usually show poorly on few-shot learning tasks, where a classifier has to quickly generalize after getting very few samples from each class. A Model-Agnostic Meta Learning (MAML) model, which is able to solve new learning tasks, only using a small number of training data. A MAML model with a Convolutional Neural Network (CNN) architecture is implemented as well, trained on the Omniglot dataset (rather than DNN), as a baseline for image classification tasks. However, our baseline model suffered from a long-period training process and relatively low efficiency. To address these problems, we introduced Recurrent Neural Network (RNN) architecture and its advanced variants into our MAML model, including Long Short-Term Memory (LSTM) architecture and its variants: LSTM-b and Gated Recurrent Unit (GRU). The experiment results, measured by ac- curacies, demonstrate a considerable improvement in image classification performance and training efficiency compared to the baseline models.
引用
收藏
页码:56 / 67
页数:12
相关论文
共 50 条
  • [31] Multi-Agent Chronological Planning with Model-Agnostic Meta Reinforcement Learning
    Hu, Cong
    Xu, Kai
    Zhu, Zhengqiu
    Qin, Long
    Yin, Quanjun
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [32] Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning
    Ji, Kaiyi
    Yang, Junjie
    Liang, Yingbin
    Journal of Machine Learning Research, 2022, 23
  • [33] Trapezoidal Step Scheduler for Model-Agnostic Meta-Learning in Medical Imaging
    Voon, Wingates
    Hum, Yan Chai
    Tee, Yee Kai
    Yap, Wun-She
    Lai, Khin Wee
    Nisar, Humaira
    Mokayed, Hamam
    PATTERN RECOGNITION, 2025, 161
  • [34] Cross Domain Adaptation of Crowd Counting with Model-Agnostic Meta-Learning
    Hou, Xiaoyu
    Xu, Jihui
    Wu, Jinming
    Xu, Huaiyu
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [35] Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
    Vuorio, Risto
    Sun, Shao-Hua
    Hu, Hexiang
    Lim, Joseph J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [36] Visual analysis of meteorological satellite data via model-agnostic meta-learning
    Shiyu Cheng
    Hanwei Shen
    Guihua Shan
    Beifang Niu
    Weihua Bai
    Journal of Visualization, 2021, 24 : 301 - 315
  • [37] On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning Algorithms
    Fallah, Alireza
    Mokhtari, Aryan
    Ozdaglar, Asuman
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1082 - 1091
  • [38] Specific Emitter Identification With Limited Samples: A Model-Agnostic Meta-Learning Approach
    Yang, Ning
    Zhang, Bangning
    Ding, Guoru
    Wei, Yimin
    Wei, Guofeng
    Wang, Jian
    Guo, Daoxing
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (02) : 345 - 349
  • [39] Visual analysis of meteorological satellite data via model-agnostic meta-learning
    Cheng, Shiyu
    Shen, Hanwei
    Shan, Guihua
    Niu, Beifang
    Bai, Weihua
    JOURNAL OF VISUALIZATION, 2021, 24 (02) : 301 - 315
  • [40] Responsible model deployment via model-agnostic uncertainty learning
    Lahoti, Preethi
    Gummadi, Krishna
    Weikum, Gerhard
    MACHINE LEARNING, 2023, 112 (03) : 939 - 970