Representations and structural properties of periodic systems

被引:10
|
作者
Aleixo, Jose Carlos [1 ]
Polderman, Jan Willem
Rocha, Paula
机构
[1] Univ Beira Interior, Dept Math, P-6201001 Covilha, Portugal
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
关键词
discrete-time systems; time-varying systems; difference equations; behavior;
D O I
10.1016/j.automatica.2007.03.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider periodic behavioral systems as introduced in [Kuijper, M., & Willems, J. C. (1997). A behavioral framework for periodically time-varying systems. In Proceedings of the 36th conference on decision & control (Vol. 3, pp. 2013-2016). San Diego, California, USA, 10-12 December 1997] and analyze two main issues: behavioral representation, and controllability/autonomy. More concretely, we study the equivalence and the minimality of kernel representations, and introduce latent variable (and, in particular, image) representations. Moreover we relate the controllability of a periodic system with the controllability of an associated time-invariant system known as lifted system, and derive a controllability test. Further, we prove the existence of an autonomous/controllable decomposition similar to the time-invariant case. Finally, we introduce a new concept of free variables and inputs, which can be regarded as a generalization of the one adopted for time-invariant systems, but appears to be more adequate for the periodic case. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1921 / 1931
页数:11
相关论文
共 50 条
  • [21] Periodic representations in Salem bases
    Tomáš Vávra
    Israel Journal of Mathematics, 2021, 242 : 83 - 95
  • [22] Spectral properties of periodic systems cut at an angle
    Gontier, David
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (08) : 949 - 958
  • [23] Braid representations of periodic links
    Lee, SY
    Park, CY
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 55 (01) : 7 - 18
  • [24] CYCLIC REPRESENTATIONS AND PERIODIC POINTS
    Petrusel, Gabriela
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2005, 50 (03): : 107 - 112
  • [25] PERIODIC REPRESENTATIONS FOR CUBIC IRRATIONALITIES
    Abrate, Marco
    Barbero, Stefano
    Cerruti, Umberto
    Murru, Nadir
    FIBONACCI QUARTERLY, 2012, 50 (03): : 252 - 264
  • [26] Periodic representations in algebraic bases
    Kala, Vitezslav
    Vavra, Tomas
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (01): : 109 - 119
  • [27] ROBUST PROPERTIES OF PERIODIC DISCRETE AND MULTIRATE SYSTEMS
    ZHU, GM
    SKELTON, RE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (05) : 610 - 615
  • [28] ON PERIODIC REPRESENTATIONS OF QUANTUM GROUPS
    ARNAUDON, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (11-12): : 1873 - 1880
  • [29] Periodic representations in algebraic bases
    Vítězslav Kala
    Tomáš Vávra
    Monatshefte für Mathematik, 2019, 188 : 109 - 119
  • [30] PERIODIC REPRESENTATIONS IN SALEM BASES
    Vavra, Tomas
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 242 (01) : 83 - 95