Bilinear analysis for Kernel selection and nonlinear feature extraction

被引:29
|
作者
Yang, Shu [1 ]
Yan, Shuicheng
Zhang, Chao
Tang, Xiaoou
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[3] Peking Univ, Natl Lab Machine Percept, Beijing 100871, Peoples R China
[4] Microsoft Res Asia, Visual Comp Grp, Beijing, Peoples R China
[5] Chinese Univ Hong Kong, Dept Informat Engn, Shatin, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2007年 / 18卷 / 05期
基金
中国国家自然科学基金;
关键词
bilinear analysis; discriminant analysis; face recognition; feature extraction; Fisher criterion; kernel selection;
D O I
10.1109/TNN.2007.894042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a unified criterion, Fisher + kernel criterion (FKC), for feature extraction and recognition. This new criterion is intended to extract the most discriminant features in different nonlinear spaces, and then, fuse these features under a unified measurement. Thus, FKC can simultaneously achieve nonlinear discriminant analysis and kernel selection. In addition, we present an efficient algorithm Fisher + kernel analysis (FKA), which utilizes the bilinear analysis, to optimize the new criterion. This FKA algorithm can alleviate the ill-posed problem existed in traditional kernel discriminant analysis (KDA), and usually, has no singularity problem. The effectiveness of our proposed algorithm is validated by a series of face-recognition experiments on several different databases.
引用
收藏
页码:1442 / 1452
页数:11
相关论文
共 50 条
  • [31] Refined Kernel Principal Component Analysis Based Feature Extraction
    Li Junbao
    Yu Longjiang
    Sun Shenghe
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (03) : 467 - 470
  • [32] Semisupervised Kernel Feature Extraction for Remote Sensing Image Analysis
    Izquierdo-Verdiguier, Emma
    Gomez-Chova, Luis
    Bruzzone, Lorenzo
    Camps-Valls, Gustavo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09): : 5567 - 5578
  • [33] Kernel-OPBS Algorithm: A Nonlinear Feature Selection Method for Hyperspectral Imagery
    Li, Xiaorun
    Zhang, Wenqiang
    Niu, Shengda
    Cao, Zhiyu
    Zhao, Liaoying
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 464 - 468
  • [34] COMBINING FEATURE SELECTION WITH EXTRACTION: UNSUPERVISED FEATURE SELECTION BASED ON PRINCIPAL COMPONENT ANALYSIS
    Li, Yun
    Lu, Bao-Liang
    Zhang, Teng-Fei
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2009, 18 (06) : 883 - 904
  • [35] Nonlinear Feature Extraction Using Kernel Principal Component Analysis With Non-negative Pre-image
    Kallas, Maya
    Honeine, Paul
    Richard, Cedric
    Amoud, Hassan
    Francis, Clovis
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 3642 - 3645
  • [36] Feature extraction based on kernel UDP
    Yang, Wankou
    Wang, Jianguo
    Ren, Mingwu
    Yang, Jingyu
    [J]. Journal of Computational Information Systems, 2008, 4 (06): : 2833 - 2840
  • [37] fMRI based computer aided diagnosis of schizophrenia using fuzzy kernel feature extraction and hybrid feature selection
    Juneja, Akanksha
    Rana, Bharti
    Agrawal, R. K.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (03) : 3963 - 3989
  • [38] fMRI based computer aided diagnosis of schizophrenia using fuzzy kernel feature extraction and hybrid feature selection
    Akanksha Juneja
    Bharti Rana
    R. K. Agrawal
    [J]. Multimedia Tools and Applications, 2018, 77 : 3963 - 3989
  • [39] Feature selection with kernel class separability
    Wang, Lei
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (09) : 1534 - 1546
  • [40] Feature selection and learning for graphlet kernel
    Aziz, Furqan
    Ullah, Afan
    Shah, Faiza
    [J]. PATTERN RECOGNITION LETTERS, 2020, 136 : 63 - 70