Ets transcription factors are important downstream targets of oncogenic Ras. The transcriptional activity of several Ets family members is regulated by Ras, and interfering with Ets-dependent transcription by expression of just the Ets2 DNA binding domain can inhibit or reverse Ras-mediated cellular transformation. To better understand the role of Ets proteins in Ras transformation, we have now analyzed the effects of stably expressing a variety of Ets2 constructs in Ras-transformed NIH3T3 (DT) cells. Expression of only the Ets2 transactivation domains, which also inhibits Ras or Neu/ErbB-2-mediated activation of Ets-dependent transcription, strongly inhibited anchorage-independent growth, but did not revert the transformed DT cell morphology, Unexpectedly, high expression of full-length Ets2, a transcriptional activator, broadly reversed the transformed properties of DT cells, including anchorage-independent growth, transformed morphology, and tumorigenicity, but did not impair attached cell growth. Increasing full-length Ets2 transcriptional activity by fusing it to the VP16 transactivation domain enhanced its ability to reverse DT cell transformation. Mutational analysis revealed that the mitogen-activated protein kinase phosphorylation site required for Ras-mediated activation, Ets2(T72), was not essential for Ets2 reversion activity. The distinct reversion activities of the highly expressed Ets2 transactivation domains or full-length Ets2, along with the specific reversion activity by Ets2 constructs that either inhibit or activate Ets-dependent transcription, suggests multiple roles for Ets factors in cellular transformation. These results indicate that several distinct approaches for modulating Ets activity may be useful for intervention in human cancers.