Zeros of the Wigner distribution and the short-time Fourier transform

被引:12
|
作者
Groechenig, Karlheinz [1 ]
Jaming, Philippe [2 ]
Malinnikova, Eugenia [3 ,4 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Bordeaux, Inst Math Bordeaux, UMR 5251, F-33405 Talence, France
[3] Norwegian Univ Sci & Technol, Dept Math Sci, Alfred Getz Vei 1, Trondheim, Norway
[4] Stanford Univ, Dept Math, Bldg 380, Stanford, CA 94305 USA
来源
REVISTA MATEMATICA COMPLUTENSE | 2020年 / 33卷 / 03期
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
Wigner distribution; Short-time Fourier transform; Hudson's theorem; Poly-analytic function; Convexity; Hurwitz polynomial; Totally positive function; THEOREM;
D O I
10.1007/s13163-019-00335-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the question under which conditions the zero set of a (cross-) Wigner distribution W(f, g) or a short-time Fourier transform is empty. This is the case when both f and g are generalized Gaussians, but we will construct less obvious examples consisting of exponential functions and their convolutions. The results require elements from the theory of totally positive functions, Bessel functions, and Hurwitz polynomials. The question of zero-free Wigner distributions is also related to Hudson's theorem for the positivity of the Wigner distribution and to Hardy's uncertainty principle. We then construct a class of step functions S so that the Wigner distribution W(f, 1((0,1))) always possesses a zero f is an element of S boolean AND L-p when p < infinity, but may be zero-free for f is an element of S boolean AND L-infinity. The examples show that the question of zeros of the Wigner distribution may be quite subtle and relate to several branches of analysis.
引用
收藏
页码:723 / 744
页数:22
相关论文
共 50 条
  • [21] Directional Short-Time Fourier Transform of Ultradistributions
    Sanja Atanasova
    Snježana Maksimović
    Stevan Pilipović
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3069 - 3087
  • [22] Staggered parallel short-time Fourier transform
    Labao, Alfonso B.
    Camaclang, Rodolfo C., III
    Caro, Jaime D. L.
    DIGITAL SIGNAL PROCESSING, 2019, 93 : 70 - 86
  • [23] Directional Short-Time Fourier Transform of Ultradistributions
    Atanasova, Sanja
    Maksimovic, Snjezana
    Pilipovic, Stevan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3069 - 3087
  • [24] Sliding Short-Time Fractional Fourier Transform
    Huang, Gaowa
    Zhang, Feng
    Tao, Ran
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1823 - 1827
  • [25] Inversion formulas for the short-time Fourier transform
    Hans G. Feichtinger
    Ferenc Weisz
    The Journal of Geometric Analysis, 2006, 16 : 507 - 521
  • [26] Multiplier theorems for the short-time Fourier transform
    Weisz, Ferenc
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (01) : 133 - 149
  • [28] Directional Short-Time Fourier Transform and Quasiasymptotics of Distributions
    Buralieva, J. V.
    Saneva, K.
    Atanasova, S.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2019, 53 (01) : 3 - 10
  • [29] Short-time quadratic-phase Fourier transform
    Shah, Firdous A.
    Lone, Waseem Z.
    Tantary, Azhar Y.
    OPTIK, 2021, 245
  • [30] Planar Sampling Sets for the Short-Time Fourier Transform
    Jaming, Philippe
    Speckbacher, Michael
    CONSTRUCTIVE APPROXIMATION, 2021, 53 (03) : 479 - 502