3D Stokes parameters for vector focal fields

被引:3
|
作者
Andreev, A., V [1 ]
Shoutova, O. A. [1 ]
Trushin, S. M. [1 ]
Stremoukhov, S. Yu [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Leninskie Gory 1,Build 2, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
HARMONIC-GENERATION;
D O I
10.1364/JOSAB.455841
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The study is devoted to the application of the formalism of 3D Stokes parameters to the near-focal structured fields described with Richards-Wolf vector focusing theory. The distribution of the local polarization properties of these fields is characterized in the plane perpendicular to optical axes. The linear polarization parameter is explored, first tested by comparing basic loosely and tightly focused Gaussian beams and then, getting deeper insight into its descriptive capabilities, applied to different spatial modes. The distributions of the linear polarization parameter and directional cosines of polarization ellipses' planes in the transverse plane are presented. (C) 2022 Optica Publishing Group
引用
收藏
页码:1775 / 1782
页数:8
相关论文
共 50 条
  • [21] Computing singularities of 3D vector fields with geometric algebra
    Mann, S
    Rockwood, A
    VIS 2002: IEEE VISUALIZATION 2002, PROCEEDINGS, 2002, : 283 - 289
  • [22] Singularities of 3D vector fields preserving the Martinet form
    Anastassiou, S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (01) : 1061 - 1069
  • [23] Accelerating the computation of 3D gradient vector flow fields
    Vidholm, Erik
    Sundqvist, Per
    Nystrom, Ingela
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 677 - +
  • [24] On Some Nonstandard Boundary Value Problems for 3D Vector Fields
    Dubinskii, Yu. A.
    DIFFERENTIAL EQUATIONS, 2019, 55 (04) : 515 - 522
  • [25] Asymptotic stability and bifurcations of 3D piecewise smooth vector fields
    Tiago Carvalho
    Marco Antônio Teixeira
    Durval José Tonon
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [26] Topological construction and visualization of higher order 3D vector fields
    Weinkauf, T
    Theisel, H
    Hege, HC
    Seidel, HP
    COMPUTER GRAPHICS FORUM, 2004, 23 (03) : 469 - 478
  • [27] Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion
    Skraba, Primoz
    Rosen, Paul
    Wang, Bei
    Chen, Guoning
    Bhatia, Harsh
    Pascucci, Valerio
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (06) : 1683 - 1693
  • [28] Codimension-two singularities of reversible vector fields in 3D
    Medrado J.C.R.
    Teixeira M.A.
    Qualitative Theory of Dynamical Systems, 2001, 2 (2) : 399 - 428
  • [29] Nearly Recurrent Components in 3D Piecewise Constant Vector Fields
    Szymczak, Andrzej
    Brunhart-Lupo, Nicholas
    COMPUTER GRAPHICS FORUM, 2012, 31 (03) : 1115 - 1124
  • [30] ELECTROWETTING OF A 3D DROP: NUMERICAL MODELLING WITH ELECTROSTATIC VECTOR FIELDS
    Ciarlet, Patrick, Jr.
    Scheid, Claire
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04): : 647 - 670