Width of Non-Deterministic Automata

被引:0
|
作者
Kuperberg, Denis [1 ]
Majumdar, Anirban [2 ]
机构
[1] CNRS, ENS Lyon, LIP, Paris, France
[2] Chennai Math Inst, Chennai, Tamil Nadu, India
关键词
Width; Non-deterministic Automata; Determinisation; Good-for-games; Complexity; NFA;
D O I
10.4230/LIPIcs.STACS.2018.47
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a measure called width, quantifying the amount of nondeterminism in automata. Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe an incremental determinisation construction on NFAs, which can be more efficient than the full powerset determinisation, depending on the width of the input NFA. This construction can be generalised to infinite words, and is particularly well-suited to coBuchi automata in this context. For coBiichi automata, this procedure can be used to compute either a deterministic automaton or a GFG one, and it is algorithmically more efficient in this last case. We show this fact by proving that checking whether a coBiichi automaton is determinisable by pruning is NP-complete. On finite or infinite words, we show that computing the width of an automaton is PSPACE-hard.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] On the Use of Non-deterministic Automata for Presburger Arithmetic
    Durand-Gasselin, Antoine
    Habermehl, Peter
    CONCUR 2010 - CONCURRENCY THEORY, 2010, 6269 : 373 - +
  • [12] NAPOLY: A Non-deterministic Automata Processor OverLaY
    Karakchi, Rasha
    Bakos, Jason D.
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2023, 16 (03)
  • [13] Minimizing a Class of Non-Deterministic Finite Automata
    Zhang, Li
    ASIA-PACIFIC YOUTH CONFERENCE ON COMMUNICATION TECHNOLOGY 2010 (APYCCT 2010), 2010, : 471 - 474
  • [15] Minimization of non-deterministic automata with large alphabets
    Abdulla, PA
    Deneux, J
    Kaati, L
    Nilsson, M
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2006, 3845 : 31 - 42
  • [16] Cellular non-deterministic automata and partial differential equations
    Kohler, D.
    Mueller, J.
    Weyer, U.
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 311 : 1 - 16
  • [17] Edge-minimization of non-deterministic finite automata
    Melnikov B.F.
    Melnikova A.A.
    Korean Journal of Computational and Applied Mathematics, 2001, 8 (3): : 469 - 479
  • [18] FINITE-MEMORY AUTOMATA WITH NON-DETERMINISTIC REASSIGNMENT
    Kaminski, Michael
    Zeitlin, Daniel
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (05) : 741 - 760
  • [19] Edge-minimization of non-deterministic finite automata
    Melnikov, B.F.
    Melnikova, A.A.
    Korean Journal of Computational and Applied Mathematics, 2001, 8 (03): : 469 - 479
  • [20] Edge-minimization of non-deterministic finite automata
    Melnikov, B.F.
    Melnikova, A.A.
    Journal of Applied Mathematics and Computing, 2001, 8 (03) : 469 - 479