Adaptive wavelet collocation method simulations of Rayleigh-Taylor instability

被引:27
|
作者
Reckinger, S. J. [1 ]
Livescu, D. [2 ]
Vasilyev, O. V. [1 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
SINGLE-MODE; FLOWS; GROWTH; NOVA;
D O I
10.1088/0031-8949/2010/T142/014064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerical simulations of single-mode, compressible Rayleigh-Taylor instability are performed using the adaptive wavelet collocation method (AWCM), which utilizes wavelets for dynamic grid adaptation. Due to the physics-based adaptivity and direct error control of the method, AWCM is ideal for resolving the wide range of scales present in the development of the instability. The problem is initialized consistent with the solutions from linear stability theory. Non-reflecting boundary conditions are applied to prevent the contamination of the instability growth by pressure waves created at the interface. AWCM is used to perform direct numerical simulations that match the early-time linear growth, the terminal bubble velocity and a reacceleration region.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] On the initialization of Rayleigh-Taylor simulations
    Ramaprabhu, P
    Andrews, MJ
    PHYSICS OF FLUIDS, 2004, 16 (08) : L59 - L62
  • [32] Experiments and Simulations on the Turbulent, Rarefaction Wave Driven Rayleigh-Taylor Instability
    Morgan, R. V.
    Jacobs, J. W.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [33] 3-DIMENSIONAL MULTIMODE SIMULATIONS OF THE ABLATIVE RAYLEIGH-TAYLOR INSTABILITY
    DAHLBURG, JP
    FYFE, DE
    GARDNER, JH
    HAAN, SW
    BODNER, SE
    DOOLEN, GD
    PHYSICS OF PLASMAS, 1995, 2 (06) : 2453 - 2459
  • [34] Simulations of radiative effects on the Rayleigh-Taylor instability using the CRASH code
    Trantham, M. R.
    Kuranz, C. C.
    Malamud, G.
    Grosskopf, M. J.
    Myra, E. S.
    Drake, R. P.
    Miles, A. R.
    Park, H. -S.
    Remington, B. A.
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (02) : 303 - 308
  • [35] LASNEX SIMULATIONS OF THE CLASSICAL AND LASER-DRIVEN RAYLEIGH-TAYLOR INSTABILITY
    MIKAELIAN, KO
    PHYSICAL REVIEW A, 1990, 42 (08): : 4944 - 4951
  • [36] Rayleigh-Taylor instability at a tilted interface in laboratory experiments and numerical simulations
    Holford, JM
    Dalziel, SB
    Youngs, D
    LASER AND PARTICLE BEAMS, 2003, 21 (03) : 419 - 423
  • [37] Asymptotic behavior of the Rayleigh-Taylor instability
    Duchemin, L
    Josserand, C
    Clavin, P
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [38] Nonlinear saturation of the Rayleigh-Taylor instability
    Das, A
    Mahajan, S
    Kaw, P
    Sen, A
    Benkadda, S
    Verga, A
    PHYSICS OF PLASMAS, 1997, 4 (04) : 1018 - 1027
  • [40] NUMERICAL STUDY OF THE RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1980, 255 (02): : 318 - 322