Kahler geometry of toric varieties and extremal metrics

被引:152
|
作者
Abreu, M [1 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, Inst Super Tecn, P-1096 Lisbon, Portugal
关键词
D O I
10.1142/S0129167X98000282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (symplectic) toric variety X, of real dimension 2n, is completely determined by its moment polytope a Delta subset of R-n. Recently Guillemin gave an explicit combinatorial way of constructing "toric" Kahler metrics on X, using only data on Delta. In this paper, differential geometric properties of these metrics are investigated using Guillemin's construction. In particular, a nice combinatorial formula for the scalar curvature R is given, and the Euler-Lagrange condition for such "toric" metrics being extremal tin the sense of Calabi) is proven to be R being an affine function on Delta subset of R-n. A construction, due to Calabi, of a 1-parameter family of extremal Kahler metrics of non-constant scalar curvature on CP2 #<(CP)over bar>(2) is recast very simply and explicitly using Guillemin's approach. Finally, we present a curious combinatorial identity for convex polytopes Delta subset of R-n that follows from the wellknown relation between the total integral of the scalar curvature of a Kahler metric and the wedge product of the first Chern class of the underlying complex manifold with a suitable power of the Kahler class.
引用
收藏
页码:641 / 651
页数:11
相关论文
共 50 条
  • [21] Weighted extremal Kahler metrics and the Einstein-Maxwell geometry of projective bundles
    Apostolov, Vestislav
    Maschler, Gideon
    Tonnesen-Friedman, Christina W.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (04) : 689 - 744
  • [22] Extremal metrics on toric manifolds and homogeneous toric bundles
    Li, An-Min
    Lian, Zhao
    Sheng, Li
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, : 237 - 259
  • [23] Hamiltonian 2-forms in Kahler geometry, III Extremal metrics and stability
    Apostolov, Vestislav
    Calderbank, DavidM. J.
    Gauduchon, Paul
    Tonnesen-Friedman, Christina W.
    INVENTIONES MATHEMATICAE, 2008, 173 (03) : 547 - 601
  • [24] Geometry of toric varieties
    Brasselet, JP
    ALGEBRAIC GEOMETRY, 1997, 193 : 53 - 87
  • [25] EXTREMAL ALMOST-KAHLER METRICS
    Lejmi, Mehdi
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (12) : 1639 - 1662
  • [26] Extremal Kahler metrics and Hamiltonian functions
    Chave, T
    Pedersen, H
    Tonnesen-Friedman, C
    Valent, G
    JOURNAL OF GEOMETRY AND PHYSICS, 1999, 31 (01) : 25 - 34
  • [27] Einstein manifolds and extremal Kahler metrics
    LeBrun, Claude
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 678 : 69 - 94
  • [28] Heat flows for extremal Kahler metrics
    Simanca, SR
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2005, 4 (02) : 187 - 217
  • [29] A Splitting Theorem for Extremal Kahler Metrics
    Apostolov, Vestislav
    Huang, Hongnian
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (01) : 149 - 170
  • [30] EXTREMAL KAHLERIAN METRICS ON TORIC SURFACES
    Biquard, Olivier
    ASTERISQUE, 2011, (339) : 181 - 201