Period-adding and spiral organization of the periodicity in a Hopfield neural network

被引:26
|
作者
Rech, Paulo C. [1 ]
机构
[1] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, Brazil
关键词
Hopfield neural network; Hyperbolic tangent activation function; Lyapunov exponents; Period-adding bifurcation; PARAMETER-SPACE; CIRCUIT; BIFURCATION; DYNAMICS; DIAGRAMS; CHUA;
D O I
10.1007/s13042-013-0222-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work reports two-dimensional parameter space plots, concerned with a three-dimensional Hopfield-type neural network with a hyperbolic tangent as the activation function. It shows that typical periodic structures embedded in a chaotic region, called shrimps, organize themselves in two independent ways: (i) as spirals that individually coil up toward a focal point while undergo period-adding bifurcations and, (ii) as a sequence with a well-defined law of formation, constituted by two different period-adding sequences inserted between.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] Period-adding sequences and their scaling and multiple devil's staircase
    He, DR
    Qu, SX
    3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 1998, : 670 - 673
  • [22] On period-adding sequences of attracting cycles in piecewise linear maps
    Maistrenko, YL
    Maistrenko, VL
    Vikul, SI
    CHAOS SOLITONS & FRACTALS, 1998, 9 (1-2) : 67 - 75
  • [23] Experimental investigation of the period-adding bifurcation route to chaos in plasma
    Chu, Zijia
    Yao, Jingfeng
    Wang, Hailu
    Yuan, Chengxun
    Zhou, Zhongxiang
    Kudryavtsev, Anatoly
    Wang, Ying
    Wang, Xiaoou
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [24] Multistability, period-adding, and spirals in a snap system with exponential nonlinearity
    Bruna B. T. Francisco
    Paulo C. Rech
    The European Physical Journal B, 2023, 96
  • [25] EXPERIMENTAL CONFIRMATION OF THE PERIOD-ADDING ROUTE TO CHAOS IN A NONLINEAR CIRCUIT
    PEI, LQ
    GUO, F
    WU, SX
    CHUA, LO
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (04): : 438 - 442
  • [26] Chaos and Period-Adding; Experimental and Numerical Verification of the Grazing Bifurcation
    P. T. Piiroinen
    L. N. Virgin
    A. R. Champneys
    Journal of Nonlinear Science, 2004, 14 : 383 - 404
  • [27] Coexistence of Subharmonic Resonant Modes Obeying a Period-Adding Rule
    Kroetz, Tiago
    Portela, Jefferson S. E.
    Viana, Ricardo L.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (10):
  • [28] Multistability, period-adding, and spirals in a snap system with exponential nonlinearity
    Francisco, Bruna B. T.
    Rech, Paulo C.
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (05):
  • [29] Chaos and period-adding: Experimental and numerical verification of the grazing bifurcation
    Piiroinen, PT
    Virgin, LN
    Champneys, AR
    JOURNAL OF NONLINEAR SCIENCE, 2004, 14 (04) : 383 - 404
  • [30] Period-adding bifurcations in a one parameter family of interval maps
    LoFaro, T
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 24 (04) : 27 - 41