Simultaneous Monte Carlo analysis of parton densities and fragmentation functions

被引:53
|
作者
Moffat, E. [1 ]
Melnitchouk, W. [2 ]
Rogers, T. C. [1 ,2 ]
Sato, N. [2 ]
机构
[1] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA
[2] Jefferson Lab, Newport News, VA 23606 USA
关键词
DEUTERON STRUCTURE FUNCTIONS; HIGH STATISTICS MEASUREMENT; INELASTIC MUON SCATTERING; E+E-ANNIHILATION; CROSS-SECTIONS; HADRON-PRODUCTION; LEADING ORDER; QCD ANALYSIS; PROTON; EVOLUTION;
D O I
10.1103/PhysRevD.104.016015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform a comprehensive new Monte Carlo analysis of high-energy lepton-lepton, lepton-hadron and hadron-hadron scattering data to simultaneously determine parton distribution functions (PDFs) in the proton and parton to hadron fragmentation functions (FFs). The analysis includes all available semi-inclusive deep-inelastic scattering and single-inclusive e(+)e(-) annihilation data for pions, kaons and unidentified charged hadrons, which allows the flavor dependence of the fragmentation functions to be constrained. Employing a new multistep fitting strategy and more flexible parametrizations for both PDFs and FFs, we assess the impact of different datasets on sea quark densities and confirm the previously observed suppression of the strange quark distribution. The new fit, which we refer to as "JAM20-SIDIS," will allow for improved studies of universality of parton correlation functions, including transverse momentum dependent (TMD) distributions, across a wide variety of process, and the matching of collinear to TMD factorization descriptions.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [31] CHARMED QUARK FRAGMENTATION FUNCTIONS IN A MONTE-CARLO QUARK RECOMBINATION MODEL
    CERNY, V
    LICHARD, P
    PISUT, J
    ACTA PHYSICA POLONICA B, 1979, 10 (09): : 779 - 784
  • [32] Markov chain Monte Carlo techniques applied to parton distribution functions determination: Proof of concept
    Gbedo, Yemalin Gabin
    Mangin-Brinet, Mariane
    PHYSICAL REVIEW D, 2017, 96 (01)
  • [33] Old and new parton distribution and fragmentation functions
    Efremov, AV
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 : A97 - A105
  • [34] Evolution of parton fragmentation functions at finite temperature
    Osborne, JA
    Wang, E
    Wang, XN
    PHYSICAL REVIEW D, 2003, 67 (09):
  • [35] Anomalous dimensions of the double parton fragmentation functions
    Fleming, Sean
    Leibovich, Adam K.
    Mehen, Thomas
    Rothstein, Ira Z.
    PHYSICAL REVIEW D, 2013, 87 (07):
  • [36] Fragmentation functions and parton distribution functions for the pion with the nonlocal interactions
    Nam, Seung-il
    Kao, Chung-Wen
    PHYSICAL REVIEW D, 2012, 85 (03):
  • [37] First Monte Carlo analysis of fragmentation functions from single-inclusive e+e- annihilation
    Sato, Nobuo
    Ethier, J. J.
    Melnitchouk, W.
    Hirai, M.
    Kumano, S.
    Accardi, A.
    PHYSICAL REVIEW D, 2016, 94 (11)
  • [38] A Monte-Carlo simulation of double parton scattering
    Cabouat, Baptiste
    Gaunt, Jonathan R.
    Ostrolenk, Kiran
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [39] A Monte-Carlo simulation of double parton scattering
    Baptiste Cabouat
    Jonathan R. Gaunt
    Kiran Ostrolenk
    Journal of High Energy Physics, 2019
  • [40] Matching NLO with parton shower in Monte Carlo scheme
    Sapeta, Sebastian
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2016, 273 : 2078 - 2083