Protein network construction using reverse phase protein array data

被引:4
|
作者
Varghese, Rency S. [1 ]
Zuo, Yiming [1 ,2 ]
Zhao, Yi [1 ,3 ]
Zhang, Yong-Wei [1 ]
Jablonski, Sandra A. [1 ]
Pierobon, Mariaelena [4 ]
Petricoin, Emanuel F. [4 ]
Ressom, Habtom W. [1 ]
Weiner, Louis M. [1 ]
机构
[1] Georgetown Univ, Lombardi Comprehens Canc Ctr, Dept Oncol, Washington, DC 20057 USA
[2] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Arlington, VA USA
[3] Brown Univ, Sch Publ Hlth, Dept Biostat, Providence, RI 02912 USA
[4] George Mason Univ, Ctr Appl Prote & Mol Med, Manassas, VA USA
关键词
RPPA; MANOVA; Network construction; Topology analysis; Breast cancer; PROGRESSION;
D O I
10.1016/j.ymeth.2017.06.017
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, we introduce a novel computational method for constructing protein networks based on reverse phase protein array (RPPA) data to identify complex patterns in protein signaling. The method is applied to phosphoproteomic profiles of basal expression and activation/phosphorylation of 76 key signaling proteins in three breast cancer cell lines (MCF7, LCC1, and LCC9). Temporal RPPA data are acquired at 48 h, 96 h, and 144 h after knocking down four genes in separate experiments. These genes are selected from a previous study as important determinants for breast cancer survival. Interaction networks are constructed by analyzing the expression levels of protein pairs using a multivariate analysis of variance model. A new scoring criterion is introduced to determine relevant protein pairs. Through a network topology based analysis, we search for wiring patterns to identify key proteins that are associated with significant changes in expression levels across various experimental conditions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 50 条
  • [31] Molecular network analysis using reverse phase protein microarrays for patient tailored therapy
    Speer, Runa
    Wulfkuhle, Julia
    Espina, Virginia
    Aurajo, Robyn
    Edmiston, Kirsten H.
    Liotta, Lance A.
    Petricoin, Emanuel E., III
    TARGETED THERAPIES IN CANCER: MYTH OR REALITY?, 2008, 610 : 177 - 186
  • [32] Comprehensive analysis of Reverse Phase Protein Array data reveals characteristic unique proteomic signatures for glioblastoma subtypes
    Patil, Vikas
    Mahalingam, Kulandaivelu
    GENE, 2019, 685 : 85 - 95
  • [33] A Comprehensive Comparison of Normalization Methods for Loading Control and Variance Stabilization of Reverse-Phase Protein Array Data
    Liu, Wenbin
    Ju, Zhenlin
    Lu, Yiling
    Mills, Gordon B.
    Akbani, Rehan
    CANCER INFORMATICS, 2014, 13 : 109 - 117
  • [34] Clinical utility of reverse phase protein array for molecular classification of breast cancer
    Negm, Ola H.
    Muftah, Abir A.
    Aleskandarany, Mohammed A.
    Hamed, Mohamed R.
    Ahmad, Dena A. J.
    Nolan, Christopher C.
    Diez-Rodriguez, Maria
    Tighe, Patrick J.
    Ellis, Ian O.
    Rakha, Emad A.
    Green, Andrew R.
    BREAST CANCER RESEARCH AND TREATMENT, 2016, 155 (01) : 25 - 35
  • [35] Clinical utility of reverse phase protein array for molecular classification of breast cancer
    Ola H. Negm
    Abir A. Muftah
    Mohammed A. Aleskandarany
    Mohamed R. Hamed
    Dena A. J. Ahmad
    Christopher C. Nolan
    Maria Diez-Rodriguez
    Patrick J. Tighe
    Ian O. Ellis
    Emad A. Rakha
    Andrew R. Green
    Breast Cancer Research and Treatment, 2016, 155 : 25 - 35
  • [37] Reverse phase protein microarrays and protein detection arrays: Tools for the next generation of quantitative protein network analysis.
    Loebke, Christian
    Korf, Ulrike
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, 2007, 37 (02): : 195 - 196
  • [38] Comparison of protein expression profiles of matched primary and metastatic papillary serous ovarian cancers using a reverse-phase protein array technology
    Ladanyi, A.
    Carey, M.
    Kenny, H.
    Mills, G.
    Yamada, S.
    Hennessy, B.
    Lengyel, E.
    GYNECOLOGIC ONCOLOGY, 2010, 116 (03) : S159 - S159
  • [39] A pilot proteomic analysis to identify biomarker proteins in human pancreatic cancer using reverse phase protein array
    Huang, Yu-jing
    Zhang, Nianxiang
    Frazier, Marsha
    Wei, Chongjuan
    CANCER RESEARCH, 2014, 74 (19)
  • [40] Epithelial Mesenchymal Transition in Early Invasive Breast Cancer: Further Evidence Using Reverse Phase Protein Array
    Aleskandarany, M. A.
    Negm, O. H.
    Rakha, E. A.
    Ahmed, M. A. H.
    Nolan, C. C.
    Tighe, P. J.
    Green, A. R.
    Ellis, I. O.
    JOURNAL OF PATHOLOGY, 2013, 231 : 19 - 19