Maximally dissipative solutions for incompressible fluid dynamics

被引:8
|
作者
Lasarzik, Robert [1 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
来源
关键词
Existence; Navier-Stokes; Euler; incompressible; Fluid dynamics; Dissipative solutions; MEASURE-VALUED SOLUTIONS; WEAK-STRONG UNIQUENESS; EQUATIONS;
D O I
10.1007/s00033-021-01628-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the new concept of maximally dissipative solutions for a general class of isothermal GENERIC systems. Under certain assumptions, we show that maximally dissipative solutions are well-posed as long as the bigger class of dissipative solutions is non-empty. Applying this result to the Navier-Stokes and Euler equations, we infer global well-posedness of maximally dissipative solutions for these systems. The concept of maximally dissipative solutions coincides with the concept of weak solutions as long as the weak solutions inherits enough regularity to be unique.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Reply to comment on 'On scaling solutions with a dissipative fluid'
    Ibáñez, J
    Clarkson, CA
    Coley, AA
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (05) : 1017 - 1018
  • [22] Dissipative fluid dynamics for the dilute Fermi gas at unitarity: Anisotropic fluid dynamics
    Bluhm, M.
    Schaefer, T.
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [23] Cauchy Problem for Dissipative Hölder Solutions to the Incompressible Euler Equations
    S. Daneri
    Communications in Mathematical Physics, 2014, 329 : 745 - 786
  • [24] Interfacial gauge methods for incompressible fluid dynamics
    Saye, Robert
    SCIENCE ADVANCES, 2016, 2 (06):
  • [25] A meshfree method for incompressible fluid dynamics problems
    Tsukanov, I
    Shapiro, V
    Zhang, S
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (01) : 127 - 158
  • [26] A CONTRIBUTION TO STATISTICAL DYNAMICS OF AN INCOMPRESSIBLE TURBULENT FLUID
    DAVYDOV, BI
    DOKLADY AKADEMII NAUK SSSR, 1961, 3661 : 47 - &
  • [27] A CONTRIBUTION TO THE STATISTICAL DYNAMICS OF AN INCOMPRESSIBLE TURBULENT FLUID
    DAVYDOV, BI
    DOKLADY AKADEMII NAUK SSSR, 1961, 136 (01): : 47 - &
  • [28] Maximally incompressible neutron star matter
    Olson, TS
    PHYSICAL REVIEW C, 2001, 63 (01): : 158021 - 158027
  • [29] Dissipative particle dynamics modeling of low Reynolds number incompressible flows
    Mai-Duy, N.
    Pan, D.
    Phan-Thien, N.
    Khoo, B. C.
    JOURNAL OF RHEOLOGY, 2013, 57 (02) : 585 - 604
  • [30] From kinetic theory to dissipative fluid dynamics
    Betz, B.
    Henkel, D.
    Rischke, D. H.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 62, NO 2, 2009, 62 (02): : 556 - 561