An Existence Criterion for Maximizers of Convolution Operators in L1(Rn)

被引:0
|
作者
Kalachev, G., V [1 ]
Sadov, S. Yu [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Lab Problems Theoret Cybernet, Moscow 119992, Russia
关键词
convolution operator; space L-1; maximizer; Pexider's equation; Cauchy's functional equation; measurable solution;
D O I
10.3103/S0027132221040033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The convolution operator with a complex-valued integrable kernel in the space of integrable functions is considered; a necessary and sufficient condition for the existence of a maximizer, i.e., a norm-one function that maximizes the norm of the convolution, is given. The analysis of measurable solutions of Pexider's functional equation defined on subsets of positive measure in R-n plays the key role.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 50 条
  • [41] Convolution and potential type operators in Lp(x)(Rn).
    Samko, SG
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (3-4) : 261 - 284
  • [42] Extension of Operators Defined on Reflexive Subspaces of L1 or L1/H10
    S. V. Kislyakov
    Journal of Mathematical Sciences, 2003, 115 (2) : 2147 - 2156
  • [43] BEST CONSTANTS AND EXISTENCE OF MAXIMIZERS FOR ANISOTROPIC WEIGHTED MOSER-TRUDINGER INEQUALITIES IN RN
    Cheng, Tingzhi
    Zhang, Tao
    Zhou, Chunqin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (09) : 3424 - 3455
  • [44] A LOWER BOUND FOR PROJECTION OPERATORS ON L1 (-1, 1)
    GORLICH, E
    MARKETT, C
    ARKIV FOR MATEMATIK, 1986, 24 (01): : 81 - 92
  • [45] K-functionals on L1 (Rn) related to the Laplacian
    Trebels, W
    Westphal, U
    HARMONIC ANALYSIS AT MOUNT HOLYOKE, 2003, 320 : 459 - 465
  • [46] A NOTE ON THE RN,K PROPERTY FOR L1(MU, E)
    RAO, TSSRK
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (01): : 74 - 77
  • [47] AN L1 CRITERION FOR DICTIONARY LEARNING BY SUBSPACE IDENTIFICATION
    Jaillet, Florent
    Gribonval, Remi
    Plumbley, Mark D.
    Zayyani, Hadi
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 5482 - 5485
  • [48] Weak coercivity of systems of differential operators in L1 and L∞
    Limanskii, DV
    Malamud, MM
    DOKLADY MATHEMATICS, 2004, 70 (01) : 584 - 588
  • [49] COMPLEXIFICATION OF OPERATORS FROM L-INFINITY INTO L1
    KRIVINE, JL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (06): : 377 - 379
  • [50] The Stokes operator with Robin boundary conditions in solenoidal subspaces of L1(Rn+) and L∞(Rn+)
    Saal, Juergen
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (03) : 343 - 373