Wearable Self-Powered Electrochemical Devices for Continuous Health Management

被引:82
|
作者
Parrilla, Marc [1 ,2 ]
De Wael, Karolien [1 ,2 ]
机构
[1] Univ Antwerp, Dept Biosci Engn, A Sense Lab, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
[2] Univ Antwerp, NANOlab Ctr Excellence, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
关键词
energy harvesting; energy storage; health management; self-powered sensors; wearable electrochemical sensors; BIOFUEL CELLS; THERMOELECTRIC GENERATOR; SALIVARY BIOMARKERS; CARBON NANOTUBES; ELECTRONIC-SKIN; RECENT PROGRESS; ENERGY; SENSORS; GLUCOSE; STATE;
D O I
10.1002/adfm.202107042
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The wearable revolution is already present in society through numerous gadgets. However, the contest remains in fully deployable wearable (bio)chemical sensing. Its use is constrained by the energy consumption which is provided by miniaturized batteries, limiting the autonomy of the device. Hence, the combination of materials and engineering efforts to develop sustainable energy management is paramount in the next generation of wearable self-powered electrochemical devices (WeSPEDs). In this direction, this review highlights for the first time the incorporation of innovative energy harvesting technologies with top-notch wearable self-powered sensors and low-powered electrochemical sensors toward battery-free and self-sustainable devices for health and wellbeing management. First, current elements such as wearable designs, electrochemical sensors, energy harvesters and storage, and user interfaces that conform WeSPEDs are depicted. Importantly, the bottlenecks in the development of WeSPEDs from an analytical perspective, product side, and power needs are carefully addressed. Subsequently, energy harvesting opportunities to power wearable electrochemical sensors are discussed. Finally, key findings that will enable the next generation of wearable devices are proposed. Overall, this review aims to bring new strategies for an energy-balanced deployment of WeSPEDs for successful monitoring of (bio)chemical parameters of the body toward personalized, predictive, and importantly, preventive healthcare.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Self-powered nanowire devices
    Xu, Sheng
    Qin, Yong
    Xu, Chen
    Wei, Yaguang
    Yang, Rusen
    Wang, Zhong Lin
    NATURE NANOTECHNOLOGY, 2010, 5 (05) : 366 - 373
  • [22] Self-powered electrochemical sensors
    del Campo, Francisco Javier
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 41
  • [23] Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices
    Zhou, Honglei
    Zhang, Yue
    Qiu, Ye
    Wu, Huaping
    Qin, Weiyang
    Liao, Yabin
    Yu, Qingmin
    Cheng, Huanyu
    BIOSENSORS & BIOELECTRONICS, 2020, 168 (168):
  • [24] Energy-Optimal Gesture Recognition using Self-Powered Wearable Devices
    Park, Jaehyun
    Bhat, Ganapati
    Geyik, Cemil S.
    Lee, Hyung Gyu
    Ogras, Umit Y.
    2018 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): ADVANCED SYSTEMS FOR ENHANCING HUMAN HEALTH, 2018, : 45 - 48
  • [25] Prediction of Harvestable Energy for Self-Powered Wearable Healthcare Devices: Filling a Gap
    Wahba, Maram A.
    Ashour, Amira S.
    Ghannam, Rami
    IEEE ACCESS, 2020, 8 : 170336 - 170354
  • [26] Fish Scale for Wearable, Self-Powered TENG
    Zhao, Liwei
    Han, Jin
    Zhang, Xing
    Wang, Chunchang
    NANOMATERIALS, 2024, 14 (05)
  • [27] Self-Powered Wearable Sensor Platforms for Wellness
    Misra, Veena
    Lach, John
    Bozkurt, Alper
    Calhoun, Ben
    Datta, Suman
    Oralkan, Omer
    2015 INTERNATIONAL CONFERENCE ON COMPILERS, ARCHITECTURE AND SYNTHESIS FOR EMBEDDED SYSTEMS (CASES), 2015, : 187 - 187
  • [28] Self-powered wearable sensors design considerations
    Han, Weiqiao
    Anaya, David Vera
    Wu, Taiyang
    Wu, Fan
    Yuce, Mehmet Rasit
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2022, 32 (08)
  • [29] Wearable Systems for Self-Powered Healthcare Applications
    Lin, Zong-Hong
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019,
  • [30] Thermoelectric generator with a high integration density for portable and wearable self-powered electronic devices
    Van Toan, Nguyen
    Tuoi, Truong Thi Kim
    Van Hieu, Nguyen
    Ono, Takahito
    ENERGY CONVERSION AND MANAGEMENT, 2021, 245