Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion

被引:77
|
作者
Kempf, A. [1 ,2 ]
Hilgenberg, K. [2 ,3 ]
机构
[1] Volkswagen AG, Mat Technol, Berliner Ring 2, D-38440 Wolfsburg, Germany
[2] Tech Univ Berlin, Inst Machine Tools & Factory Management, Pascalstr 8-9, D-10587 Berlin, Germany
[3] Fed Inst Mat Res & Testing, Unter Eichen 87, D-12205 Berlin, Germany
关键词
Laser powder bed fusion; Ring trial; AlSi10Mg; Microstructure; Mechanical properties; Heat treatment; MELTED ALSI10MG; HEAT-TREATMENT; MICROSTRUCTURE EVOLUTION; PROCESS OPTIMIZATION; ALLOY; ALUMINUM; BEHAVIOR; FATIGUE; SLM; PRECIPITATION;
D O I
10.1016/j.msea.2020.138976
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
AlSi10Mg is one of the most applied alloys for laser powder bed fusion (LPBF) technology, due to its great possibilities for implementing new lightweight concepts such as in automotive industries. For the component design it is necessary to know about the mechanical properties and the mechanical behaviour. The many published strength properties of LPBF processed AlSi10Mg show significant differences up to approximately 225 MPa in ultimate tensile strength (UTS) and 195 MPa in yield strength (YS). To understand these varying properties, a ring trial was carried out manufacturing specimens on 6 LPBF machines with different parameters and build-up strategies. They were studied in the as-built (AB) condition and after heat treatment at 300 degrees C for 30 min, respectively. For examining the mechanical properties, tensile tests and hardness measurements were carried out. The microstructure was characterized by optical light microscopy (OM), field emission scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The identified differences in strength properties were discussed based on the 4 strengthening mechanism known for metallic materials and at the background of material defects. It was found that the size of the typical sub-cell structure of LPBF AlSi10Mg affected substantially the mechanical properties in the AB condition, in which with decreasing sub-cell size strength increased. If heat treatment was applied, the strength properties decreased and did not differ anymore. Since annealing led to coarsened sub-cells, whereas the grains itself did not change in size, the influence of sub-cell structure on strength was further confirmed. In addition, acicular precipitates in the AB condition were observed at specimens from one LPBF machine showing the lowest tensile elongation.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Corrosion in laser powder bed fusion AlSi10Mg alloy
    Laieghi, Hossein
    Kvvssn, Varma
    Butt, Muhammad Muteeb
    Ansari, Peyman
    Salamci, Metin U.
    Patterson, Albert E.
    Salamci, Elmas
    ENGINEERING REPORTS, 2024, 6 (10)
  • [12] Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy
    Hyer, Holden
    Zhou, Le
    Park, Sharon
    Gottsfritz, Guilherme
    Benson, George
    Tolentino, Bjorn
    McWilliams, Brandon
    Cho, Kyu
    Sohn, Yongho
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2020, 9 (04) : 484 - 502
  • [13] Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy
    Holden Hyer
    Le Zhou
    Sharon Park
    Guilherme Gottsfritz
    George Benson
    Bjorn Tolentino
    Brandon McWilliams
    Kyu Cho
    Yongho Sohn
    Metallography, Microstructure, and Analysis, 2020, 9 : 484 - 502
  • [14] Boosting Productivity of Laser Powder Bed Fusion for AlSi10Mg
    Defanti, Silvio
    Cappelletti, Camilla
    Gatto, Andrea
    Tognoli, Emanuele
    Fabbri, Fabrizio
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2022, 6 (05):
  • [15] Corrosion Behavior of Heat-Treated AlSi10Mg Manufactured by Laser Powder Bed Fusion
    Cabrini, Marina
    Calignano, Flaviana
    Fino, Paolo
    Lorenzi, Sergio
    Lorusso, Massimo
    Manfredi, Diego
    Testa, Cristian
    Pastore, Tommaso
    MATERIALS, 2018, 11 (07):
  • [16] Effect of Heat Treatment on Gradient Microstructure of AlSi10Mg Lattice Structure Manufactured by Laser Powder Bed Fusion
    Liu, Mulin
    Takata, Naoki
    Suzuki, Asuka
    Kobashi, Makoto
    MATERIALS, 2020, 13 (11)
  • [17] Study of Microstructure and Surface Morphology of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion
    Cui, Lujun
    Liu, Songyang
    Li, Xiaolei
    Wang, Mengle
    Guo, Shirui
    Cui, Yinghao
    Chen, Yongqian
    Liu, Jialin
    Zheng, Bo
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [18] Correlation between quasistatic and fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion
    Kempf, Andreas
    Kruse, Julius
    Madia, Mauro
    Hilgenberg, Kai
    9TH EDITION OF THE INTERNATIONAL CONFERENCE ON FATIGUE DESIGN, FATIGUE DESIGN 2021, 2022, 38 : 77 - 83
  • [19] Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties
    Yang, Tao
    Liu, Tingting
    Liao, Wenhe
    MacDonald, Eric
    Wei, Huiliang
    Zhang, Changdong
    Chen, Xiangyuan
    Zhang, Kai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 849
  • [20] Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy
    Chu, Fuzhong
    Li, Erlei
    Shen, Haopeng
    Chen, Zhuoer
    Li, Yixin
    Liu, Hui
    Min, Shiling
    Tian, Xinni
    Zhang, Kai
    Zhou, Zongyan
    Zou, Ruiping
    Hou, Juan
    Wu, Xinhua
    Huang, Aijun
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 183 - 195