Liouville integrability of classical Calogero-Moser models

被引:11
|
作者
Khastgir, SP [1 ]
Sasaki, R [1 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
基金
日本学术振兴会;
关键词
D O I
10.1016/S0375-9601(00)00842-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Liouville integrability of classical Calogero-Moser models is proved for models based on any root system, including the noncrystallographic ones. It applies to all types of elliptic potentials, i.e., untwisted and twisted together with their degenerations (hyperbolic, trigonometric and rational), except for the rational potential models confined by a harmonic force. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:189 / 193
页数:5
相关论文
共 50 条
  • [21] Hierarchies of spin models related to Calogero-Moser models
    Inozemtsev, VI
    Sasaki, R
    NUCLEAR PHYSICS B, 2001, 618 (03) : 689 - 698
  • [22] Calogero-Moser models. II - Symmetries and foldings
    Bordner, AJ
    Sasaki, R
    Takasaki, K
    PROGRESS OF THEORETICAL PHYSICS, 1999, 101 (03): : 487 - 518
  • [23] Flows of Calogero-Moser Systems
    Ben-Zvi, David
    Nevins, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [24] MULTITRANSITIVITY OF CALOGERO-MOSER SPACES
    Berest, Yuri
    Eshmatov, Alimjon
    Eshmatov, Farkhod
    TRANSFORMATION GROUPS, 2016, 21 (01) : 35 - 50
  • [25] The geometry of Calogero-Moser systems
    Hurtubise, J
    Nevins, T
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) : 2091 - 2116
  • [26] SUPERINTEGRABILITY OF THE CALOGERO-MOSER SYSTEM
    WOJCIECHOWSKI, S
    PHYSICS LETTERS A, 1983, 95 (06) : 279 - 281
  • [27] On the geometry of the Calogero-Moser system
    Couwenberg, W
    Heckman, G
    Looijenga, E
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (3-4): : 443 - 459
  • [28] Universality of Calogero-Moser model
    Olshanetsky M.A.
    Journal of Nonlinear Mathematical Physics, 2005, 12 (Suppl 1) : 522 - 534
  • [29] Universal Lax pair for generalised Calogero-Moser models
    Sasaki, R
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 254 - 260
  • [30] Calogero-Moser models. I - A new formulation
    Bordner, AJ
    Corrigan, E
    Sasaki, R
    PROGRESS OF THEORETICAL PHYSICS, 1998, 100 (06): : 1107 - 1129