Laplacian Star Coordinates for Visualizing Multidimensional Data

被引:0
|
作者
Tran Van Long [1 ]
机构
[1] Univ Transport & Commun, Fac Basic Sci, Hanoi, Vietnam
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multidimensional data visualization is an interesting research field with many applications in ubiquitous all fields of sciences. Star coordinates are one of the most common information visualization techniques for visualizing multidimensional data. A star coordinate system is a linear transformation that maps a multidimensional data space into a two-dimensional visual space, unfortunately, involving a loss of information. In this paper, we proposed to improve standard star coordinates by developing the concept of Laplacian star coordinates for visualizing multidimensional data. The Laplacian star coordinate system is based on dimension axes placement according to their similarity, which improves the quality of data representation. We prove the efficiency and robustness of our methods by measuring the quality of the representations for several data sets.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 50 条
  • [31] An Incremental Dimensionality Reduction Method for Visualizing Streaming Multidimensional Data
    Fujiwara, Takanori
    Chou, Jia-Kai
    Shilpika
    Xu, Panpan
    Ren, Liu
    Ma, Kwan-Liu
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 418 - 428
  • [32] Visualizing Multidimensional Lifelogging Data: A Case Study on MyMovieHistory Project
    Hong, Minsung
    Jung, Jason J.
    CYBERNETICS AND SYSTEMS, 2018, 49 (5-6) : 384 - 398
  • [33] caOmicsV: an R package for visualizing multidimensional cancer genomic data
    Hongen Zhang
    Paul S. Meltzer
    Sean R. Davis
    BMC Bioinformatics, 17
  • [34] Visualizing multidimensional data through granularity-dependent spatialization
    Kontaxaki, Sofia
    Tomai, Eleni
    Kokla, Margarita
    Kavouras, Marinos
    VISUALIZATION AND DATA ANALYSIS 2010, 2010, 7530
  • [35] GPLOM: The Generalized Plot Matrix for Visualizing Multidimensional Multivariate Data
    Im, Jean-Francois
    McGuffin, Michael J.
    Leung, Rock
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 2606 - 2614
  • [36] Enhancing Visualization of Multidimensional Data by Ordering Parallel Coordinates Axes
    Nabil, Ayman
    Mohamed, Karim M.
    Kamal, Yasser M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (09) : 340 - 344
  • [37] Where did my Lines go? Visualizing Missing Data in Parallel Coordinates
    Baeuerle, A.
    van Onzenoodt, C.
    der Kinderen, S.
    Westberg, J. Johansson
    Joensson, D.
    Ropinski, T.
    COMPUTER GRAPHICS FORUM, 2022, 41 (03) : 235 - 246
  • [38] scatterbar: an R package for visualizing proportional data across spatially resolved coordinates
    Velazquez, Dee
    Fan, Jean
    BIOINFORMATICS, 2025, 41 (02)
  • [39] A Real-Time Update Approach for Visualizing Multidimensional Big Data
    Haihong, E.
    Kong, Huihui
    Liu, Yunfeng
    Song, Meina
    Ou, Zhonghong
    HUMAN CENTERED COMPUTING, 2019, 11956 : 98 - 104
  • [40] A Multidimensional Data Visualization Method Based On Parallel Coordinates and Enhanced Ring
    Chen, Yi
    Cheng, Xianchen
    Chen, Hongqian
    2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 2224 - 2229