A DIGITAL TWIN FRAMEWORK FOR REAL-TIME ANALYSIS AND FEEDBACK OF REPETITIVE WORK IN THE MANUAL MATERIAL HANDLING INDUSTRY

被引:8
|
作者
Sharotry, Abhimanyu [1 ]
Jimenez, Jesus A. [2 ,3 ]
Wierschem, David [4 ]
Mediavilla, Francis A. Mendez [5 ]
Koldenhoven, Rachel M. [6 ]
Valles, Damian [2 ]
Koutitas, George [2 ]
Aslan, Semih [2 ]
机构
[1] Texas State Univ, Dept Ind Engn, Ingram Sch Engn, 601 Univ Dr, San Marcos, TX 78666 USA
[2] Texas State Univ, Ingram Sch Engn, 601 Univ Dr, San Marcos, TX 78666 USA
[3] Texas State Univ, Ctr High Performance Syst CHiPS, 601 Univ Dr, San Marcos, TX 78666 USA
[4] Texas State Univ, McCoy Coll Business, Undergrad Programs, 601 Univ Dr, San Marcos, TX 78666 USA
[5] Texas State Univ, McCoy Coll Business, 601 Univ Dr, San Marcos, TX 78666 USA
[6] Texas State Univ, Dept Hlth & Human Performance, Athlet Training, 601 Univ Dr, San Marcos, TX 78666 USA
关键词
DESIGN; ERGONOMICS; FATIGUE;
D O I
10.1109/WSC48552.2020.9384043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research presents a digital twin concept and prototype to represent human operators in the material handling industry. To construct the digital twin, we use a simulation-based framework for data collection and analysis. The framework consists of three modules: Data Collection Module, Operator Analysis and Feedback Module and Digital Twin Module. A motion capture system assists in the development of the digital twin, which captures simulated material handling activities, similar to those which take place in an actual environment. This paper outlines the processes involved in the development of the digital twin and summarizes the results of pilot experiments to analyze the operator's fatigue as the operator completes repetitive motions associated with lifting tasks. Fatigue, in this study, is a function of change in joint angles. The digital-twin based tool provides feedback to the operator in real-time to enable correction of those factors which potentially cause injuries to the operator.
引用
下载
收藏
页码:2637 / 2648
页数:12
相关论文
共 50 条
  • [41] Real-time optimization for a Digital Twin of a robotic cell with human operators
    Albini, Teresa
    Brocchi, Andrea
    Murgia, Gianluca
    Pranzo, Marco
    COMPUTERS IN INDUSTRY, 2023, 146
  • [42] Real-time field synchronization mechanism for Digital Twin manufacturing systems
    Abdoune, Farah
    Cardin, Olivier
    Nouiri, Maroua
    Castagna, Pierre
    IFAC PAPERSONLINE, 2023, 56 (02): : 5649 - 5654
  • [43] Smart City Digital Twin Framework for Real-Time Multi-Data Integration and Wide Public Distribution
    Adreani, Lorenzo
    Bellini, Pierfrancesco
    Fanfani, Marco
    Nesi, Paolo
    Pantaleo, Gianni
    IEEE ACCESS, 2024, 12 : 76277 - 76303
  • [44] Evaluating a Microgrid Operation through Real-Time Digital Twin Simulation
    Blasi, Thais M.
    Blasi, Raphael M.
    Aoki, Alexandre R.
    Fernandes, Thelma S. P.
    da Trindade, Marcela R. G.
    Alexandre, Victor H.
    2023 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES LATIN AMERICA, ISGT-LA, 2023, : 65 - 69
  • [45] Real-time Modeling and Simulation Method of Digital Twin Production Line
    Gao, Yunpeng
    Lv, Haiyang
    Hou, Yongzhu
    Liu, Jihong
    Xu, Wenting
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 1639 - 1642
  • [46] Framework for Digital Twin Real-Time Battery System for Model-in-the-loop and Hardware-in-the-loop Simulations
    Pandit, Harshad Rajendra
    Biju, Nikhil
    Pisharodi, Vivek
    Dimitrakopoulos, Pantelis
    Shenoy, Manish
    2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,
  • [47] Toward a Digital Twin for real-time geometry assurance in individualized production
    Soderberg, Rikard
    Warmefjord, Kristina
    Carlson, Johan S.
    Lindkvist, Lars
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2017, 66 (01) : 137 - 140
  • [48] A White-Box Digital Twin for Real-Time Polarization Tracking
    Zhang, Xuguang
    Pu, Guoqing
    Wu, Yong
    Hu, Weisheng
    Yi, Lilin
    LASER & PHOTONICS REVIEWS, 2024, 18 (09)
  • [49] GAS TURBINE PERFORMANCE DIGITAL TWIN FOR REAL-TIME EMBEDDED SYSTEMS
    Panov, V.
    Cruz-Manzo, S.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 5, PT I, 2020,
  • [50] Real-time monitoring of milling tool state based on digital twin
    Liu M.
    Yue C.
    Xia W.
    Zhang J.
    Liu X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (06): : 2118 - 2129