Hahn-Banach separation theorem for max-plus semimodules

被引:0
|
作者
Cohen, G [1 ]
Gaubert, S [1 ]
Quadrat, JP [1 ]
机构
[1] CERMICS, ENPC, F-77455 Marne La Vallee 2, France
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce max-plus analogues of basic Euclidian geometry notions: scalar product is replaced by a scalar division, and the associated distance is essentially Hilbert's projective distance. We introduce an orthogonal projection and prove a Hahn-Banach type theorem: a point can be separated from a semimodule by a hyperplane orthogonal to the direction of projection. We use these results to separate max-plus convex sets, and illustrate this new geometry by two-dimensional examples.
引用
收藏
页码:325 / 334
页数:10
相关论文
共 50 条
  • [21] A new version of the Hahn-Banach theorem
    Simons, S
    ARCHIV DER MATHEMATIK, 2003, 80 (06) : 630 - 646
  • [22] The Hahn-Banach theorem almost everywhere
    Badora, Roman
    AEQUATIONES MATHEMATICAE, 2016, 90 (01) : 173 - 179
  • [23] The Hahn-Banach theorem: The life and times
    Narici, L
    Beckenstein, E
    TOPOLOGY AND ITS APPLICATIONS, 1997, 77 (02) : 193 - 211
  • [24] A new version of the Hahn-Banach theorem
    S. Simons
    Archiv der Mathematik, 2003, 80 : 630 - 646
  • [25] ABSTRACT VERSION OF HAHN-BANACH THEOREM
    RODE, G
    ARCHIV DER MATHEMATIK, 1978, 31 (05) : 474 - 481
  • [26] A generalization of Hahn-Banach extension theorem
    Peng, JW
    Lee, HWJ
    Rong, WD
    Yang, XM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (02) : 441 - 449
  • [27] HAHN-BANACH THEOREM FOR DISTRIBUTIVE LATTICES
    CIGNOLI, RLO
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 800 - &
  • [28] The Hahn-Banach Theorem on Arbitrary Groups
    Huang, Jianfeng
    Li, Yongjin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2009, 49 (02): : 245 - 254
  • [29] GENERALIZATIONS OF THE HAHN-BANACH THEOREM REVISITED
    Dinh, N.
    Mo, T. H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (04): : 1285 - 1304
  • [30] ON HAHN-BANACH TYPE EXTENSION THEOREM
    ISEKI, K
    KASAHARA, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1965, 41 (01): : 29 - &