Computation of five- and six-dimensional Bieberbach groups

被引:21
|
作者
Cid, C [1 ]
Schulz, T [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math B, D-52064 Aachen, Germany
关键词
D O I
10.1080/10586458.2001.10504433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the computation and classification of 5-and 6-dimensional torsion-free crystallographic groups, known as Bieberbach groups. We describe the basis of an algorithm that decides torsion-freeness of a crystallographic group as well as the triviality of its centre. The computations were done using the computer package CARAT, which handles enumeration, construction, recognition and comparison problems for crystallographic groups up to dimension 6. The complete list of isomorphism types of Bieberbach groups up to dimension 6 can be found online.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
  • [21] Six-dimensional quadratic forms
    Laghribi, A
    MATHEMATISCHE NACHRICHTEN, 1999, 204 : 125 - 135
  • [22] Superforms in six-dimensional superspace
    Cesar Arias
    William D. Linch
    Alexander K. Ridgway
    Journal of High Energy Physics, 2016
  • [23] Six-dimensional 'rotational relativity'
    Yefremov, Alexander P.
    Acta Physica Hungarica New Series Heavy Ion Physics, 2000, 11 (01): : 147 - 153
  • [24] Six-dimensional "Rotational Relativity"
    Yefremov, AP
    ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 2000, 11 (1-2): : 147 - 153
  • [25] Superradiant stability of five and six-dimensional extremal Reissner–Nordstrom black holes
    Jia-Hui Huang
    Tian-Tian Cao
    Mu-Zi Zhang
    The European Physical Journal C, 2021, 81
  • [26] Triviality problem and high-temperature expansions of higher susceptibilities for the Ising and scalar-field models in four-, five-, and six-dimensional lattices
    Butera, P.
    Pernici, M.
    PHYSICAL REVIEW E, 2012, 85 (02)
  • [27] Lie symmetries of the canonical geodesic equations for six-dimensional nilpotent lie groups
    Ghanam, Ryad
    Thompson, Gerard
    COGENT MATHEMATICS & STATISTICS, 2020, 7
  • [28] Five- and six-part Masses and Magnificat
    Bowers, Roger
    Skinner, David
    EARLY MUSIC, 2007, 35 (04) : 639 - 641
  • [29] Five- or six-step scenario for evolution?
    Carter, Brandon
    INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2008, 7 (02) : 177 - 182
  • [30] Chiral five- and six-coordinate aluminum
    Miguel-Angel Muñoz-Hernandez
    Sean Parkin
    Burl Yearwood
    Pingrong Wei
    David A. Atwood
    Journal of Chemical Crystallography, 2000, 30 : 215 - 218