Piecewise linear model for field-responsive fluids

被引:4
|
作者
Lee, CH [1 ]
Reitich, F
Jolly, MR
Banks, HT
机构
[1] Calif State Univ Fullerton, Dept Math, Fullerton, CA 92834 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Lord Corp, Div Mat, Cary, NC 27511 USA
[4] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
field-responsive fluids; Frohlich-Kennelly; nonlinear saturation; piecewise linear models;
D O I
10.1109/20.914377
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Frohlich-Kennelly model provides a constitutive law for saturation that is field dependent and has been widely used for studying nonlinear properties for a variety of electric and magnetic applications. Under the Frohlich-Kennelly model, saturation begins to occupy the entire conducting domain even at low moderate applied fields, In this paper, we first present a new nonlinear constitutive law for field-responsive fluids that depends on the local fields and allows regions where the fields have not reached a critical value to remain unsaturated. We then study numerically the nonlinear saturated model and compare the results to the Frohlich-Kennelly model and experiments performed at the Lord Corporation, Cary, NC.
引用
收藏
页码:558 / 560
页数:3
相关论文
共 50 条
  • [31] Simple preparation of magnetic field-responsive structural colored Janus particles
    Teshima, Midori
    Seki, Takahiro
    Takeoka, Yukikazu
    CHEMICAL COMMUNICATIONS, 2018, 54 (21) : 2607 - 2610
  • [32] In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery
    Zhao, Weifeng
    Odelius, Karin
    Edlund, Ulrica
    Zhao, Changsheng
    Albertsson, Ann-Christine
    BIOMACROMOLECULES, 2015, 16 (08) : 2522 - 2528
  • [33] Magnetochromic Photonic Hydrogel for an Alternating Magnetic Field-Responsive Color Display
    Wang, Wentao
    Fan, Xiaoqiao
    Li, Feihu
    Qiu, Jinjing
    Umair, Malik Muhammad
    Ren, Wenchen
    Ju, Benzhi
    Zhang, Shufen
    Tang, Bingtao
    ADVANCED OPTICAL MATERIALS, 2018, 6 (04):
  • [34] Assembly of superparamagnetic colloidal nanoparticles into field-responsive purple Bragg reflectors
    Wang, Hui
    Chen, Qian-Wang
    Yu, Yi-Fei
    Cheng, Kai
    DALTON TRANSACTIONS, 2011, 40 (18) : 4810 - 4813
  • [35] A magnetic field-responsive domain in the human HSP70 promoter
    Lin, H
    Blank, M
    Goodman, R
    JOURNAL OF CELLULAR BIOCHEMISTRY, 1999, 75 (01) : 170 - 176
  • [36] Magnetic Field-Responsive Pulsatile Drug Release Using A Magnetic Fluid
    Takei, Chihiro
    Mori, Kenji
    Oshizaka, Takeshi
    Sugibayashi, Kenji
    CHEMICAL & PHARMACEUTICAL BULLETIN, 2022, 70 (01) : 50 - 51
  • [37] Optimal control and design of magnetic field-responsive smart polymer composites
    Ortigosa, R.
    Martinez-Frutos, J.
    Mora-Corral, C.
    Pedregal, P.
    Periago, F.
    APPLIED MATHEMATICAL MODELLING, 2022, 103 : 141 - 161
  • [38] Self-assembly and field-responsive optical diffractions of superparamagnetic colloids
    Ge, Jianping
    Hu, Yongxing
    Zhang, Tierui
    Huynh, Tuan
    Yin, Yadong
    LANGMUIR, 2008, 24 (07) : 3671 - 3680
  • [39] Alternating Magnetic Field-Responsive Hybrid Gelatin Microgels for Controlled Drug Release
    Sung, Baeckkyoung
    Shaffer, Steven
    Sittek, Michal
    Alboslemy, Talib
    Kim, Chanjoong
    Kim, Min-Ho
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (108):
  • [40] Electric Field-Responsive Nanopores with Ion Selectivity: Controlling Based on Transport Resistance
    Zhu, Yudan
    Ruan, Yang
    Wu, Ximing
    Lu, Xiaohua
    Zhang, Yumeng
    Lu, Linghong
    CHEMICAL ENGINEERING & TECHNOLOGY, 2016, 39 (05) : 993 - 997