An adaptive speed controller for induction motor drives using adaptive neuro-fuzzy inference system

被引:0
|
作者
Chao, Kuei-Hsiang [1 ]
Shen, Yu-Ren [2 ]
机构
[1] Natl Chin Yi Univ Technol, Dept Elect Engn, 35 215 Lane,Sec 1,Chung Shan Rd, Taichung, Taiwan
[2] Natl Chin Yi Univ Technol, Inst Informat & Elect Energy, Taichung, Taiwan
关键词
indirect field-oriented induction motor drive system; two-degreeof-freedom controller; adaptive neuro-fuzzy inference system;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study develops an adaptive speed controller from the adaptive neuro-fuzzy inference system (ANFIS) for an indirect field-oriented (IFO) induction motor drive. First, a two-degree-of-freedom controller (2DOFC) is designed quantitatively to meet the prescribed speed command tracking and load regulation responses at the nominal case. When system parameters and operating conditions vary, the prescribed control specifications cannot be satisfied. To improve this, an adaptive mechanism combining on-line system identification and ANFIS is developed for tuning the parameters of the 2DOFC to reduce control performance degradation. With the adaptive mechanism, the desired drive specifications can be achieved under wide operating ranges. Effectiveness of the proposed controller and the performance of the resulting drive system are confirmed by simulation and experimental results.
引用
收藏
页码:381 / +
页数:3
相关论文
共 50 条
  • [21] Intelligent control of a stepping motor drive using an adaptive neuro-fuzzy inference system
    Melin, P
    Castillo, O
    [J]. INFORMATION SCIENCES, 2005, 170 (2-4) : 133 - 151
  • [22] Noise cancellation by using Adaptive Neuro-Fuzzy Inference System
    Zhang, Bao-cheng
    Xu, Xie-xian
    [J]. Chuan Bo Li Xue/Journal of Ship Mechanics, 2000, 4 (04): : 62 - 67
  • [23] EEG Signals of Motor Imagery Classification Using Adaptive Neuro-Fuzzy Inference System
    El-aal, Shereen A.
    Ramadan, Rabie A.
    Ghali, Neveen I.
    [J]. ADVANCES IN NATURE AND BIOLOGICALLY INSPIRED COMPUTING, 2016, 419 : 105 - 116
  • [24] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    [J]. Computational Geosciences, 2008, 12 : 513 - 523
  • [25] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Yegireddi, Satyanarayana
    Kumar, Arvind
    [J]. COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 513 - 523
  • [26] Illuminant Estimation Using Adaptive Neuro-Fuzzy Inference System
    Luo, Yunhui
    Wang, Xingguang
    Wang, Qing
    Chen, Yehong
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [27] Text Summarization Using Adaptive Neuro-Fuzzy Inference System
    Warule, Pratiksha D.
    Sawarkar, S. D.
    Gulati, Archana
    [J]. COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75
  • [28] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [29] Iris Authentication Using Adaptive Neuro-Fuzzy Inference System
    Shiju, N. P.
    Kannan, D.
    [J]. JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1841 - 1854
  • [30] Fall detection using adaptive neuro-fuzzy inference system
    Abdali-Mohammadi F.
    Rashidpour M.
    Fathi A.
    [J]. International Journal of Multimedia and Ubiquitous Engineering, 2016, 11 (04): : 91 - 106