Off-diagonal generalized Schur numbers

被引:13
|
作者
Robertson, A [1 ]
Schaal, D
机构
[1] Colgate Univ, Dept Math, Hamilton, NY 11346 USA
[2] S Dakota State Univ, Dept Math & Stat, Brookings, SD 57007 USA
关键词
D O I
10.1006/aama.2000.0718
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine all values of the 2-colored off-diagonal generalized Schur numbers (also called Issai numbers), an extension of the generalized Schur numbers. These numbers, denoted S(k, l), are the minimal integers such that any red and blue coloring of the integers from 1 to S(k, l) must admit either a solution to Sigma (k-1)(i=I) x(i) = x(k) consisting of only red integers, or a solution to Sigma (l-1)(i=1) x(i) = x(l) consisting of only blue integers. We show that S(3, l) = 3l - 4 for odd l greater than or equal to 3, S(3, l) = 3l - 5 for even l greater than or equal to 4, and S(k, l) = kl - l - 1 for 4 less than or equal to k less than or equal to l. (C) 2001 Academic Press.
引用
收藏
页码:252 / 257
页数:6
相关论文
共 50 条
  • [31] LOCALIZATION AND OFF-DIAGONAL DISORDER
    ECONOMOU, EN
    ANTONIOU, PD
    SOLID STATE COMMUNICATIONS, 1977, 21 (03) : 285 - 288
  • [32] GENERALIZED VECTOR DOMINANCE - OFF-DIAGONAL TERMS AND ASYMPTOTIC SU(4)
    SHAW, G
    NUCLEAR PHYSICS B, 1977, 119 (01) : 105 - 111
  • [33] ALLOYS WITH OFF-DIAGONAL DISORDER
    MERTSCHING, J
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1974, 63 (01): : 241 - 249
  • [34] Off-diagonal long-range order in generalized Hubbard models
    Michielsen, K
    DeRaedt, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (11): : 1311 - 1335
  • [35] OFF-DIAGONAL LONG-RANGE ORDER AND GENERALIZED BOSE CONDENSATION
    GIRARDEAU, MD
    JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (07) : 1083 - +
  • [36] On Some Exact Formulas for 2-Color Off-diagonal Rado Numbers
    Jing J.
    Mei Y.M.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 119 : 75 - 83
  • [37] Extrapolated Diagonal and Off-Diagonal Splitting Iteration Method
    Shokrpour, Raheleh
    Ebadi, Ghodrat
    FILOMAT, 2022, 36 (08) : 2749 - 2759
  • [38] THE CONDUCTIVITY OF SYSTEMS WITH STRONG DIAGONAL AND OFF-DIAGONAL DISORDER
    BELITZ, D
    GOTZE, W
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (03): : 411 - 411
  • [39] DIAGONAL AND OFF-DIAGONAL DISORDER IN DOPED QUANTUM WELLS
    SILVA, EAD
    LIMA, ICD
    DASILVA, AF
    LEAL, CE
    PHYSICAL REVIEW B, 1988, 37 (14): : 8228 - 8233
  • [40] CORRELATED DIAGONAL AND OFF-DIAGONAL DISORDER IN AMORPHOUS SOLIDS
    MONTGOMERY, CG
    PHYSICAL REVIEW B, 1982, 25 (12): : 7773 - 7779