Functionalized cellulose as quasi single-ion conductors in polymer electrolyte for all-solid-state Li/Na and Li-S batteries

被引:34
|
作者
Ben Youcef, Hicham [1 ,2 ]
Orayech, Brahim [1 ]
Lopez Del Amo, Juan Miguel [1 ]
Bonilla, Francisco [1 ]
Shanmukaraj, Devaraj [1 ]
Armand, Michel [1 ]
机构
[1] CIC Energigune Parque Tecnol Alava, ED CIC, Albert Einstein 48, Minano 01510, Alava, Spain
[2] Mohammed VI Polytech Univ, Lot 660, Hay Moulay Rachid 43150, Ben Guerir, Morocco
关键词
Polymer electrolytes; Single ion conductors; Lithium and sodium metal-batteries; Li/S batteries; Cellulose fillers; CONDUCTIVITY;
D O I
10.1016/j.ssi.2019.115168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid polymer electrolytes (SPEs) with new functionalized ethyl cellulose bearing a lithium/sodium fluor-osulfonylimide group (Ethyl cellulose-LiFSI/NaFSI) is proposed as quasi single ion (Li+/Na+) conducting polymer electrolyte for all-solid-state lithium and sodium batteries. The degree of ethyl cellulose functionalization by anion of lithium and sodium salt measured by elemental analysis was 48 and 53%, respectively. The complex of Li(FSI-ethyl cellulose)/PEO exhibits a Li-ion transference number of T-Li( +) = 0.9, and a Na ion transference number of T-Na( +) = 0.6 for Na(FSI-ethyl cellulose),which are much higher than those reported for ambipolar LiFSI or NaFSI/PEO SPEs under the same measurement conditions. The generated SPEs showed a high electrochemical and mechanical stability as well as a practical ionic conductivity value of similar to 10(-4) S.cm(-1) at 80 degrees C. All solid-state lithium, sodium and Li/Sulfur cells cycled with quasi single ion conducting hybrid SPE exhibit reversible cycling and good performance at 70 degrees C, making them promising, environmentally benign and cost-effective candidates for use in advanced energy storage systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Observation of Chemomechanical Failure and the Influence of Cutoff Potentials in All-Solid-State Li-S Batteries
    Ohno, Saneyuki
    Koerver, Raimund
    Dewald, Georg
    Rosenbach, Carolin
    Titscher, Paul
    Steckermeier, Dominik
    Kwade, Arno
    Janek, Juergen
    Zeier, Wolfgang G.
    CHEMISTRY OF MATERIALS, 2019, 31 (08) : 2930 - 2940
  • [32] Regulate transportation of ions and polysulfides in all-solid-state Li-S batteries using ordered-MOF composite solid electrolyte
    Li, Jia
    Xie, Fangxi
    Pang, Weiwei
    Liang, Qingyou
    Yang, Xianfeng
    Zhang, Lei
    SCIENCE ADVANCES, 2024, 10 (11):
  • [33] Stability of the Solid Electrolyte Interface on the Li Electrode in Li-S Batteries
    Zheng, Dong
    Yang, Xiao-Qing
    Qu, Deyang
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (16) : 10360 - 10366
  • [34] Coordination polymer-reinforced composite polymer electrolyte for all-solid-state Li-metal batteries
    Yuan, Jiaxi
    Dong, Hao
    Wang, Bin
    Qiu, Ming
    Liu, Zhendong
    Wu, Xiaojun
    Zhong, Sheng
    Tong, Gangsheng
    Chen, Zhenying
    Zhang, Jichao
    Zhang, Qing
    Zhu, Jinhui
    Zhuang, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [35] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    JOURNAL OF POWER SOURCES, 2021, 482
  • [36] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    Journal of Power Sources, 2022, 482
  • [37] Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries
    Kim, Jae-Hun
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2023, 22 (04): : 287 - 296
  • [38] A Highly Ion-Conductive Solid Polymer Electrolyte with Good Thermal Stability and Nonflammability for All-Solid-State Li Metal Batteries
    Liu, Yang
    Wang, Lei
    Liu, Lingwang
    Xue, Jiangyan
    Zhang, Haiyang
    Xu, Jingjing
    Wu, Xiaodong
    ENERGY TECHNOLOGY, 2023, 11 (04)
  • [39] Stability of the Argyrodite Electrolyte in Li-In Based All-Solid-State Batteries
    Huang, Di
    Liu, Gao
    Tong, Wei
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (22): : 10376 - 10385
  • [40] Design, synthesis, and characterization of oxides and sulfides solid state ionic conductors for all-solid-state Li-ion batteries
    Liu, Zhantao
    Xiong, Shan
    He, Xingfeng
    Mo, Yifei
    Chen, Hailong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257