共 50 条
Prediction and Modeling of Protein-Protein Interactions Using "Spotted" Peptides with a Template-Based Approach
被引:4
|作者:
Gasbarri, Chiara
[1
]
Rosignoli, Serena
[1
]
Janson, Giacomo
[2
]
Boi, Dalila
[1
]
Paiardini, Alessandro
[1
]
机构:
[1] Sapienza Univ Roma, Dipartimento Sci Biochim A Rossi Fanelli, I-00185 Rome, Italy
[2] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
关键词:
PepThreader;
protein-protein interactions;
protein-peptide interactions;
template-based modeling;
STRUCTURAL BASIS;
DOCKING;
SIMILARITY;
INTERFACES;
COMPLEXES;
DOMAIN;
D O I:
10.3390/biom12020201
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Protein-peptide interactions (PpIs) are a subset of the overall protein-protein interaction (PPI) network in the living cell and are pivotal for the majority of cell processes and functions. High-throughput methods to detect PpIs and PPIs usually require time and costs that are not always affordable. Therefore, reliable in silico predictions represent a valid and effective alternative. In this work, a new algorithm is described, implemented in a freely available tool, i.e., "PepThreader", to carry out PPIs and PpIs prediction and analysis. PepThreader threads multiple fragments derived from a full-length protein sequence (or from a peptide library) onto a second template peptide, in complex with a protein target, "spotting" the potential binding peptides and ranking them according to a sequence-based and structure-based threading score. The threading algorithm first makes use of a scoring function that is based on peptides sequence similarity. Then, a rerank of the initial hits is performed, according to structure-based scoring functions. PepThreader has been benchmarked on a dataset of 292 protein-peptide complexes that were collected from existing databases of experimentally determined protein-peptide interactions. An accuracy of 80%, when considering the top predicted 25 hits, was achieved, which performs in a comparable way with the other state-of-art tools in PPIs and PpIs modeling. Nonetheless, PepThreader is unique in that it is able at the same time to spot a binding peptide within a full-length sequence involved in PPI and model its structure within the receptor. Therefore, PepThreader adds to the already-available tools supporting the experimental PPIs and PpIs identification and characterization.
引用
收藏
页数:14
相关论文