Entanglement entropy and quantum phase transitions in quantum dots coupled to Luttinger liquid wires

被引:11
|
作者
Goldstein, Moshe [1 ,2 ]
Gefen, Yuval [3 ]
Berkovits, Richard [1 ]
机构
[1] Bar Ilan Univ, Minerva Ctr, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
DEGENERATE ELECTRON-GAS; ONE-BODY THEORY; KONDO PROBLEM; COULOMB-BLOCKADE; SCALING THEORY; TRANSMISSION; INTERFERENCE; CONDUCTANCE; METALS; CHAINS;
D O I
10.1103/PhysRevB.83.245112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a quantum phase transition that occurs in a system composed of two impurities (or quantum dots), each coupled to a different interacting (Luttinger liquid) lead. While the impurities are coupled electrostatically, there is no tunneling between them. Using a mapping of this system onto a Kondo model, we show analytically that the system undergoes a Berezinskii-Kosterlitz-Thouless quantum phase transition as a function of the Luttinger liquid parameter in the leads and the dot-lead interaction. The phase with low values of the Luttinger liquid parameter is characterized by an abrupt switch of the population between the impurities as a function of a common applied gate voltage. However, this behavior is hard to verify numerically since one would have to study extremely long systems. Interestingly, though, at the transition the entanglement entropy drops from a finite value of ln(2) to zero. The drop becomes sharp for infinite systems. One can employ finite-size scaling to extrapolate the transition point and the behavior in its vicinity from the behavior of the entanglement entropy in moderate size samples. We employ the density matrix renormalization-group numerical procedure to calculate the entanglement entropy of systems with lead lengths of up to 480 sites. Using finite-size scaling, we extract the transition value and show it to be in good agreement with the analytical prediction.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Luttinger-liquid behavior in weakly disordered quantum wires
    Levy, E.
    Tsukernik, A.
    Karpovski, M.
    Palevski, A.
    Dwir, B.
    Pelucchi, E.
    Rudra, A.
    Kapon, E.
    Oreg, Y.
    PHYSICAL REVIEW LETTERS, 2006, 97 (19)
  • [22] Bound entanglement in quantum phase transitions
    Baghbanzadeh, S.
    Alipour, S.
    Rezakhani, A. T.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [23] Scaling, entanglement, and quantum phase transitions
    Osterloh, A
    Amico, L
    Falci, G
    Fazio, R
    LECTURES ON THE PHYSICS OF HIGHLY CORRELATED ELECTRON SYSTEMS VII, 2003, 678 : 323 - 331
  • [24] Effects of quantum entanglement in phase transitions
    Brody, Dorje C.
    Hughston, Lane P.
    Parry, Matthew F.
    PHYSICS LETTERS A, 2010, 374 (24) : 2424 - 2428
  • [25] Evidence of Luttinger liquid behavior in GaAs/AlGaAs quantum wires
    Rother, M
    Wegscheider, W
    Deutschmann, RA
    Bichler, M
    Abstreiter, G
    PHYSICA E, 2000, 6 (1-4): : 551 - 554
  • [26] Quantum phase transitions and bipartite entanglement
    Wu, LA
    Sarandy, MS
    Lidar, DA
    PHYSICAL REVIEW LETTERS, 2004, 93 (25)
  • [27] Scaling, entanglement, and quantum phase transitions
    Osterloh, A
    Amico, L
    Falci, G
    Fazio, R
    FIRST INTERNATIONAL SYMPOSIUM ON QUANTUM INFORMATICS, 2002, 5128 : 22 - 28
  • [28] Generalized entanglement and quantum phase transitions
    Somma, Rolando
    Barnum, Howard
    Knill, Emanuel
    Ortiz, Gerardo
    Viola, Lorenzo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (19): : 2760 - 2769
  • [29] Quantum impurity in a Luttinger liquid: Universal conductance with entanglement renormalization
    Lo, Ya-Lin
    Hsieh, Yun-Da
    Hou, Chang-Yu
    Chen, Pochung
    Kao, Ying-Jer
    PHYSICAL REVIEW B, 2014, 90 (23)
  • [30] Quantum phase transition in coupled quantum dots
    Andrei, N
    Zimányi, GT
    Schön, G
    PHYSICAL REVIEW B, 1999, 60 (08): : R5125 - R5128