An arbitrary high order and positivity preserving method for the shallow water equations

被引:12
|
作者
Ciallella, M. [1 ]
Micalizzi, L. [2 ]
Oeffner, P. [3 ]
Torlo, D. [4 ]
机构
[1] Univ Bordeaux, Team CARDAMOM, INRIA, CNRS,Bordeaux INP,IMB,UMR 5251, Bordeaux, France
[2] Univ Zurich, Inst Math, Zurich, Switzerland
[3] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
[4] SISSA, SISSA MathLab, Via Bonomea 265, I-34136 Trieste, Italy
基金
瑞士国家科学基金会;
关键词
Positivity preserving; Well-balanced; WENO; Modified Patankar; Shallow water; Deferred correction; DEFERRED CORRECTION METHODS; VOLUME WENO SCHEMES; RESIDUAL DISTRIBUTION; SPLIT-FORM; DISCRETIZATIONS; PROPERTY; SYSTEMS;
D O I
10.1016/j.compfluid.2022.105630
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we develop and present an arbitrary high order well-balanced finite volume WENO method combined with the modified Patankar Deferred Correction (mPDeC) time integration method for the shallow water equations. Due to the positivity-preserving property of mPDeC, the resulting scheme is unconditionally positivity preserving for the water height. To apply the mPDeC approach, we have to interpret the spatial semi-discretization in terms of production-destruction systems. Only small modifications inside the classical WENO implementation are necessary and we explain how it can be done. In numerical simulations, focusing on a fifth order method, we demonstrate the good performance of the new method and verify the theoretical properties.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] A High Order Central DG method of the Two-Layer Shallow Water Equations
    Cheng, Yongping
    Dong, Haiyun
    Li, Maojun
    Xian, Weizhi
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (04) : 1437 - 1463
  • [32] HIGH ORDER POSITIVITY-PRESERVING DISCONTINUOUS GALERKIN METHODS FOR RADIATIVE TRANSFER EQUATIONS
    Yuan, Daming
    Cheng, Juan
    Shu, Chi-Wang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A2987 - A3019
  • [33] High-order positivity-preserving kinetic schemes for the compressible Euler equations
    Estivalezes, JL
    Villedieu, P
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) : 2050 - 2067
  • [34] Positivity preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions
    Guo, Li
    Yang, Yang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 289 : 181 - 195
  • [35] Path-conservative positivity-preserving well-balanced finite volume WENO method for porous shallow water equations
    Jung, Jaeyoung
    Hwang, Jin Hwan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 490
  • [36] Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes
    Offner, Philipp
    Torlo, Davide
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 15 - 34
  • [37] A robust high order VFRoe scheme for shallow water equations
    Marche, Fabien
    Berthon, Christophe
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 785 - 794
  • [38] Analysis and simulation of arbitrary order shallow water and Drinfeld-Sokolov-Wilson equations: Natural transform decomposition method
    Ali, Nasir
    Zada, Laiq
    Nawaz, Rashid
    Jamshed, Wasim
    Ibrahim, Rabha W.
    Guedri, Kamel
    Khalifa, Hamiden Abd El-Wahed
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (06):
  • [39] A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations
    Srinivasan, Sashank
    Poggie, Jonathan
    Zhang, Xiangxiong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 366 : 120 - 143
  • [40] Positivity-Preserving High Order Finite Volume HWENO Schemes for Compressible Euler Equations
    Xiaofeng Cai
    Xiangxiong Zhang
    Jianxian Qiu
    Journal of Scientific Computing, 2016, 68 : 464 - 483