A new random perturbation interval of symmetric eigenvalue problem

被引:0
|
作者
Tang, Ling [1 ]
Xiao, Chuanfu [1 ]
Li, Hanyu [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2021年 / 69卷 / 01期
基金
中国国家自然科学基金;
关键词
Random perturbation; simple eigenvalue; confidence level; RELIABILITY ESTIMATION;
D O I
10.1080/03081087.2019.1590301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A large interval of random perturbation is presented in this study. Under the derived interval, the probability that the simple eigenvalue of original symmetric matrix is still simple is not less than a given confidence level. Numerical examples are provided to illustrate the obtained results.
引用
收藏
页码:147 / 154
页数:8
相关论文
共 50 条
  • [21] On a nonlocal perturbation of a periodic eigenvalue problem
    A. S. Makin
    [J]. Differential Equations, 2006, 42
  • [22] An Eigenvalue Problem for a Symmetric Toeplitz Matrix
    Kuznetsov, Yu. I.
    [J]. NUMERICAL ANALYSIS AND APPLICATIONS, 2009, 2 (04) : 326 - 329
  • [23] SUPRENUM SOFTWARE FOR THE SYMMETRIC EIGENVALUE PROBLEM
    GUTHEIL, I
    [J]. PARALLEL COMPUTING, 1988, 7 (03) : 419 - 424
  • [24] AN ALGORITHM FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM
    BUNSEGERSTNER, A
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) : 43 - 68
  • [25] Generalized eigenvalue problem for interval matrices
    Singh, Sarishti
    Panda, Geetanjali
    [J]. ARCHIV DER MATHEMATIK, 2023, 121 (03) : 267 - 278
  • [26] Symmetric stochastic inverse eigenvalue problem
    Zhang, Quanbing
    Xu, Changqing
    Yang, Shangjun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [27] On the symmetric quadratic eigenvalue complementarity problem
    Fernandes, Luis M.
    Judice, Joaquim J.
    Fukushima, Masao
    Iusem, Alfredo
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (04): : 751 - 770
  • [28] Symmetric stochastic inverse eigenvalue problem
    Quanbing Zhang
    Changqing Xu
    Shangjun Yang
    [J]. Journal of Inequalities and Applications, 2015
  • [29] A parallel algorithm for the symmetric eigenvalue problem
    Pavani, R
    DeRos, U
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 495 - 496
  • [30] ON THE SOLUTIONS OF INHOMOGENEOUS SYMMETRIC EIGENVALUE PROBLEM
    Grzegorski, S.
    [J]. ACTUAL PROBLEMS OF ECONOMICS, 2010, (108): : 297 - 300