K-Theoretic and Categorical Properties of Toric Deligne-Mumford Stacks

被引:12
|
作者
Coates, Tom [1 ]
Iritani, Hiroshi [2 ]
Jiang, Yunfeng [3 ]
Segal, Ed [1 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Kyoto Univ, Dept Math, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
英国工程与自然科学研究理事会;
关键词
Toric Deligne-Mumford stacks; orbifolds; K-theory; localization; derived category of coherent sheaves; Fourier-Mukai transformation; flop; K-equivalence; equivariant; variation of GIT quotient; RIEMANN-ROCH THEOREM; GROUP SCHEME ACTIONS; FORMULA; INDEX; RING;
D O I
10.4310/PAMQ.2015.v11.n2.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the following results for toric Deligne-Mumford stacks, under minimal compactness hypotheses: the Localization Theorem in equivariant K-theory; the equivariant Hirzebruch-Riemann-Roch theorem; the Fourier-Mukai transformation associated to a crepant toric wall-crossing gives an equivariant derived equivalence.
引用
收藏
页码:239 / 266
页数:28
相关论文
共 50 条