Global Mirrors and Discrepant Transformations for Toric Deligne-Mumford Stacks

被引:1
|
作者
Iritani, Hiroshi [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
quantum cohomology; mirror symmetry; toric variety; Landau-Ginzburg model; Gamma-integral structure; GROMOV-WITTEN INVARIANTS; QUANTUM RIEMANN-ROCH; HYPERGEOMETRIC-FUNCTIONS; COHOMOLOGY RING; SYMMETRY; CONVERGENCE; RESOLUTIONS; CATEGORIES; LEFSCHETZ; MANIFOLDS;
D O I
10.3842/SIGMA.2020.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a global Landau-Ginzburg model which is mirror to several toric Deligne-Mumford stacks and describe the change of the Gromov-Witten theories under discrepant transformations. We prove a formal decomposition of the quantum cohomology D-modules (and of the all-genus Gromov-Witten potentials) under a discrepant toric wall-crossing. In the case of weighted blowups of weak-Fano compact toric stacks along toric centres, we show that an analytic lift of the formal decomposition corresponds, via the (Gamma) over cap -integral structure, to an Orlov-type semiorthogonal decomposition of topological K-groups. We state a conjectural functoriality of Gromov-Witten theories under discrepant transformations in terms of a Riemann-Hilbert problem.
引用
收藏
页数:111
相关论文
共 50 条
  • [1] GLOBAL QUOTIENTS AMONG TORIC DELIGNE-MUMFORD STACKS
    Harada, Megumi
    Krepski, Derek
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2015, 52 (01) : 237 - 269
  • [2] Smooth toric Deligne-Mumford stacks
    Fantechi, Barbara
    Mann, Etienne
    Nironi, Fabio
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 648 : 201 - 244
  • [3] A NOTE ON TORIC DELIGNE-MUMFORD STACKS
    Perroni, Fabio
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2008, 60 (03) : 441 - 458
  • [4] The orbifold Chow ring of toric Deligne-Mumford stacks
    Borisov, LA
    Chen, L
    Smith, GG
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) : 193 - 215
  • [5] On the conjecture of King for smooth toric Deligne-Mumford stacks
    Borisov, Lev
    Hua, Zheng
    [J]. ADVANCES IN MATHEMATICS, 2009, 221 (01) : 277 - 301
  • [6] The integral (orbifold) Chow ring of toric Deligne-Mumford stacks
    Jiang, Yunfeng
    Tseng, Hsian-Hua
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (01) : 225 - 248
  • [7] The Coherent-Constructible Correspondence for Toric Deligne-Mumford Stacks
    Fang, Bohan
    Liu, Chiu-Chu Melissa
    Treumann, David
    Zaslow, Eric
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (04) : 914 - 954
  • [8] On motives for Deligne-Mumford stacks
    Toen, B
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (17) : 909 - 928
  • [9] Motives of Deligne-Mumford stacks
    Choudhury, Utsav
    [J]. ADVANCES IN MATHEMATICS, 2012, 231 (06) : 3094 - 3117
  • [10] On the geometry of Deligne-Mumford stacks
    Kresch, Andrew
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 259 - 271