Molecular organization and force-generating mechanism of dynein

被引:19
|
作者
Sakakibara, Hitoshi
Oiwa, Kazuhiro [1 ,2 ]
机构
[1] Natl Inst Informat & Commun Technol, Adv ICT Res Ctr, Nishi Ku, 588-2 Iwaoka, Kobe, Hyogo 6512492, Japan
[2] Univ Hyogo, Grad Sch Life Sci, Kobe, Hyogo 6500044, Japan
关键词
dynein; intracellular transport; microtubules; molecular motor; processivity; retrograde transport; single-molecule nanometry; INNER-ARM DYNEIN; MICROTUBULE-BINDING DOMAIN; HAND-OVER-HAND; CYTOPLASMIC DYNEIN; HEAVY-CHAIN; IN-VITRO; CHLAMYDOMONAS-REINHARDTII; MEMBRANE-TRAFFICKING; NUCLEOTIDE-BINDING; REGULATORY COMPLEX;
D O I
10.1111/j.1742-4658.2011.08253.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dynein, which is a minus-end-directed microtubule motor, is crucial to a range of cellular processes. The mass of its motor domain is about 10 times that of kinesin, the other microtubule motor. Its large size and the difficulty of expressing and purifying mutants have hampered progress in dynein research. Recently, however, electron microscopy, X-ray crystallography and single-molecule nanometry have shed light on several key unsolved questions concerning how the dynein molecule is organized, what conformational changes in the molecule accompany ATP hydrolysis, and whether two or three motor domains are coordinated in the movements of dynein. This minireview describes our current knowledge of the molecular organization and the force-generating mechanism of dynein, with emphasis on findings from electron microscopy and single-molecule nanometry.
引用
收藏
页码:2964 / 2979
页数:16
相关论文
共 50 条
  • [21] Understanding force-generating microtubule systems through in vitro reconstitution
    Vleugel, Mathijs
    Kok, Maurits
    Dogterom, Marileen
    CELL ADHESION & MIGRATION, 2016, 10 (05) : 475 - 494
  • [22] Effects of nitric oxide on force-generating proteins of skeletal muscle
    Galler, S
    Hilber, K
    Gobesberger, A
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1997, 434 (03): : 242 - 245
  • [23] Titin stiffness modifies the force-generating region of muscle sarcomeres
    Li, Yong
    Lang, Patrick
    Linke, Wolfgang A.
    SCIENTIFIC REPORTS, 2016, 6
  • [24] Strength training restores force-generating capacity in patients with schizophrenia
    Nygard, Mona
    Brobakken, Mathias Forsberg
    Taylor, Joshua Landen
    Reitan, Solveig Klaebo
    Guzey, Ismail Cuneyt
    Morken, Gunnar
    Lydersen, Stian
    Vedul-Kjelsas, Einar
    Wang, Eivind
    Heggelund, Jorn
    SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS, 2021, 31 (03) : 665 - 678
  • [25] Effects of nitric oxide on force-generating proteins of skeletal muscle
    S. Galler
    Karlheinz Hilber
    Alfred Göbesberger
    Pflügers Archiv, 1997, 434 : 242 - 245
  • [26] Free Energy Changes During Kinesin's Force-Generating Substep
    Hwang, Wonmuk
    Lang, Matthew J.
    Karplus, Martin
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 368A - 368A
  • [27] Acidosis and Phosphate Directly Reduce Myosin's Force-Generating Capacity Through Distinct Molecular Mechanisms
    Woodward, Mike
    Debold, Edward P.
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [28] Molecular mechanism of force generation by dynein, a molecular motor belonging to the AAA plus family
    Numata, Naoki
    Kon, Takahide
    Shima, Tomohiro
    Imamuta, Kenji
    Mogami, Toshifumi
    Ohkura, Reiko
    Sutoh, Keiko
    Sutoh, Kazuo
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2008, 36 : 131 - 135
  • [29] Transient Dynamics of the Force-Generating Domain in Myosin During the Recovery Stroke
    Nesmelov, Yuri E.
    Agafonov, Roman V.
    Negrashov, Igor V.
    Blakely, Sarah
    Titus, Margaret A.
    Thomas, David D.
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 200A - 200A
  • [30] The flexible recruitment of muscle synergies depends on the required force-generating capability
    Hagio, Shota
    Kouzaki, Motoki
    JOURNAL OF NEUROPHYSIOLOGY, 2014, 112 (02) : 316 - 327