Enhancement of dark fermentative H2 production by gas separation membranes: A review

被引:29
|
作者
Nemestothy, Nandor [1 ]
Belafi-Bako, Katalin [1 ]
Bakonyi, Peter [1 ]
机构
[1] Univ Pannonia, Res Inst Bioengn Membrane Technol & Energet, Egyet U 10, H-8200 Veszprem, Hungary
关键词
Biohydrogen; Mass transfer; Membrane separation; Process integration; Biogas recirculation; CO2; utilization; BIOLOGICAL HYDROGEN-PRODUCTION; BIOHYDROGEN PRODUCTION; MASS-TRANSFER; POLYMERIC MEMBRANES; GASEOUS-MIXTURES; WASTE; BIOREACTOR; PRESSURE; PURIFICATION; BIOGAS;
D O I
10.1016/j.biortech.2020.122828
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Biohydrogen production via dark fermentation is currently the most developed method considering its practical readiness for scale-up. However, technological issues to be resolved are still identifiable and should be of concern, particularly in terms of internal mass transfer. If sufficient liquid-to-gas H-2 mass transfer rates are not ensured, serious problems associated with the recovery of biohydrogen and consequent inhibition of the process can occur. Therefore, the continuous and effective removal of H-2 gas is required, which can be performed using gas separation membranes. In this review, we aim to analyze the literature experiences and knowledge regarding mass transfer enhancement approaches and show how membranes may contribute to this task by simultaneously processing the internal (headspace) gas, consisting mainly of H-2 and CO2. Promising strategies related to biogas recirculation and integrated schemes using membranes will be presented and discussed to detect potential future research directions for improving biohydrogen technology.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Fermentative H2 production from food waste: Parametric analysis of factor effects
    Akhlaghi, M.
    Boni, M. R.
    Polettini, A.
    Pomi, R.
    Rossi, A.
    De Gioannis, G.
    Muntoni, A.
    Spiga, D.
    BIORESOURCE TECHNOLOGY, 2019, 276 : 349 - 360
  • [42] Comparison of ceramic α-alumina and modified γ-alumina membranes for H2 separation
    Orakwe I.
    Alkali A.
    Shehu H.
    Gobina E.
    Membrane Technology, 2021, 2021 (11) : 8 - 11
  • [43] Crossing the Thauer limit: rewiring cyanobacterial metabolism to maximize fermentative H2 production
    Kumaraswamy, Kenchappa G.
    Krishnan, Anagha
    Ananyev, Gennady
    Zhang, Shuyi
    Bryant, Donald A.
    Dismukes, G. Charles
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) : 1035 - 1045
  • [44] Random organic framework membranes with hierarchical channels for H2 separation
    Luan, Liping
    Shi, Puxin
    Wang, Zhi
    Kapteijn, Freek
    Liu, Xinlei
    JOURNAL OF MEMBRANE SCIENCE, 2024, 694
  • [45] Electropolymerization of Molecular-Sieving Polythiophene Membranes for H2 Separation
    Zhang, Mengxi
    Jing, Xuechun
    Zhao, Shuang
    Shao, Pengpeng
    Zhang, Yuanyuan
    Yuan, Shuai
    Li, Yanshuo
    Gu, Cheng
    Wang, Xiaoqi
    Ye, Yanchun
    Feng, Xiao
    Wang, Bo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) : 8768 - 8772
  • [46] Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane
    Hong, M
    Falconer, JL
    Noble, RD
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (11) : 4035 - 4041
  • [47] New PEEK-WC and PLA membranes for H2 separation
    Iulianelli, A.
    Algieri, C.
    Donato, L.
    Garofalo, A.
    Galiano, F.
    Bagnato, G.
    Basile, A.
    Figoli, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (34) : 22138 - 22148
  • [48] Improved Ti-silicate umbite membranes for the separation of H2
    Sebastian, Victor
    Lin, Zhi
    Rocha, Joao
    Tellez, Carlos
    Santamaria, Jesus
    Coronas, Joaquin
    JOURNAL OF MEMBRANE SCIENCE, 2008, 323 (01) : 207 - 212
  • [49] A preferable molecular crystal membrane for H2 gas separation
    Takasaki, Yuichi
    Takamizawa, Satoshi
    CHEMICAL COMMUNICATIONS, 2014, 50 (42) : 5662 - 5664
  • [50] Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance
    Yu, Pengyao
    Yang, Ge
    Chai, Yongming
    Tosheva, Lubomira
    Wang, Chunzheng
    Jiang, Heqing
    Liu, Chenguang
    Guo, Hailing
    CHEMICAL ENGINEERING JOURNAL, 2024, 479