Spatio-Temporal Web Performance Prediction: Turning Bands Method and Sequential Gaussian Simulation

被引:0
|
作者
Borzemski, Leszek [1 ]
Danielak, Michal [1 ]
Kaminska-Chuchmala, Anna [1 ]
机构
[1] Wroclaw Univ Technol, Fac Comp Sci & Management, Dept Comp Sci, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Web application normal load testing; performance evaluation; Turning Bands Method; Sequential Gaussian Simulation; Spatio-temporal prediction;
D O I
10.1016/j.procs.2016.08.236
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a novel geostatistical approach in Web engineering that allows not only to evaluate but also to predict Web applications performance. The approach presented in this article can be used for two purposes: the first, to find (or forecast) which of the considered web servers are running web applications in the most efficient way and the second, to check (or forecast) if an evaluated web software meets given performance criteria. The first part of this paper briefly elucidates two geostatistical methods used in this research: the Turning Bands Method and Sequential Gaussian Simulation. The second part characterises the multiagent system MWING, a software solution that by conducting active measurements collects data necessary for analysing, evaluating and forecasting Web applications performance. The final part presents a case study of web performance prediction approaches proposed by the authors. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:568 / 576
页数:9
相关论文
共 50 条
  • [31] Sparse Spatio-temporal Gaussian Processes with General Likelihoods
    Hartikainen, Jouni
    Riihimaki, Jaakko
    Sarkka, Simo
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 193 - 200
  • [32] Spatio-temporal Gaussian Mixture Model for Background Modeling
    Soh, Youngsung
    Hae, Yongsuk
    Kim, Intaek
    2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 360 - 363
  • [33] Gaussian Process-based Spatio-Temporal Predictor
    Varga, Balazs
    ACTA POLYTECHNICA HUNGARICA, 2022, 19 (05) : 69 - 84
  • [34] Scattered packet method for the simulation of the spatio-temporal evolution of local perturbations
    Gaubert, P
    Varani, L
    Vaissière, JC
    Nougier, JP
    Starikov, E
    Shiktorov, P
    Gruzhinskis, V
    VLSI DESIGN, 2001, 13 (1-4) : 205 - 209
  • [35] Analysis Method of Traffic Congestion Degree Based on Spatio-Temporal Simulation
    He, Shulin
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2012, 3 (04) : 12 - 17
  • [36] Spatio-temporal Sequential Pattern Mining for Tourism Sciences
    Bermingham, Luke
    Lee, Ickjai
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2014, 29 : 379 - 389
  • [37] TIME-SEQUENTIAL SAMPLING OF SPATIO-TEMPORAL SIGNALS
    ALLEBACH, JP
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1980, 70 (12) : 1581 - 1582
  • [38] CUTOFF: A spatio-temporal imputation method
    Feng, Lingbing
    Nowak, Gen
    O'Neill, T. J.
    Welsh, A. H.
    JOURNAL OF HYDROLOGY, 2014, 519 : 3591 - 3605
  • [39] Spatio-Temporal AutoEncoder for Traffic Flow Prediction
    Liu, Mingzhe
    Zhu, Tongyu
    Ye, Junchen
    Meng, Qingxin
    Sun, Leilei
    Du, Bowen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5516 - 5526
  • [40] Prediction for spatio-temporal models with autoregression in errors
    Wang, Hongxia
    Wang, Jinde
    Huang, Bo
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) : 217 - 244