Multi-Hamilton-Jacobi quantization of O(3) nonlinear sigma model

被引:18
|
作者
Baleanu, D [1 ]
Güler, W [1 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
D O I
10.1142/S0217732301004157
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The O(3) nonlinear sigma model is investigated using multi-Hamilton-Jacobi formalism. The integrability conditions are investigated and the results are in agreement with those obtained by Dirac's method. By choosing an adequate extension of phase space we describe the transformed system by a set of three Hamilton-Jacobi equations and calculate the corresponding action.
引用
收藏
页码:873 / 879
页数:7
相关论文
共 50 条
  • [21] Constraint structure of O(3) nonlinear sigma model revisited
    Hong, ST
    Kim, YW
    Park, YJ
    Rothe, KD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (06): : 1643 - 1653
  • [22] EXACT SOLUTION OF THE O(3) NONLINEAR SIGMA-MODEL
    WIEGMANN, PB
    PHYSICS LETTERS B, 1985, 152 (3-4) : 209 - 214
  • [23] COMPOSITE SPHALERONS IN THE O(3) NONLINEAR SIGMA-MODEL
    HUANG, T
    ZHANG, X
    MODERN PHYSICS LETTERS A, 1991, 6 (26) : 2371 - 2377
  • [24] O(3) NONLINEAR SIGMA-MODEL AND PSEUDOSPHERICAL SURFACE
    HOU, BY
    HOU, BY
    WANG, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01): : 165 - 185
  • [25] Nonlinear sigma model in the Faddeev-Jackiw quantization formalism
    A. Foussats
    C. Repetto
    O. P. Zandron
    O. S. Zandron
    International Journal of Theoretical Physics, 1997, 36 : 2923 - 2935
  • [27] Nonlinear sigma model in the Faddeev-Jackiw quantization formalism
    Foussats, A
    Repetto, C
    Zandron, OP
    Zandron, OS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (12) : 2923 - 2935
  • [28] ON THE QUANTIZATION OF THE N = 2 SUPERSYMMETRIC NONLINEAR SIGMA-MODEL
    ALDAZABAL, G
    MALDACENA, JM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (19): : 3359 - 3369
  • [29] Nonlinear Semigroup Approach to the Hamilton-Jacobi Equation-a Toy Model
    Jin, Liang
    Yan, Jun
    Zhao, Kai
    MINIMAX THEORY AND ITS APPLICATIONS, 2023, 8 (01): : 61 - 84
  • [30] INDUCED FERMION NUMBER IN THE O(3) NONLINEAR SIGMA-MODEL
    CARENA, M
    CHAUDHURI, S
    WAGNER, CEM
    PHYSICAL REVIEW D, 1990, 42 (06): : 2120 - 2126